Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.12.806

SnO2-Embedded Transparent UV Photodetector  

Lee, Gyeong-Nam (Department of Electrical Engineering, Incheon National University)
Park, Wang-Hee (Department of Electrical Engineering, Incheon National University)
Kim, Joondong (Department of Electrical Engineering, Incheon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.12, 2017 , pp. 806-811 More about this Journal
Abstract
An all-transparent ultraviolet (UV) photodetector was fabricated by structuring $p-NiO/n-SnO_2/ITO$ on a glass substrate. $SnO_2$ is an important semiconductor material because of its large bandgap, high electron mobility, high transmittance (as high as 80% in the visible range), and high stability under UV light. For these reasons, $SnO_2$ is suitable for a range of applications that involve UV light. In order to form a highly transparent p-n junction for UV detection, $SnO_2$ was deposited onto a device containing NiO as a high-transparent metal conductive oxide for UV detection. We demonstrated that all-transparent UV photodetectors based on $SnO_2$ could provide a definitive photocurrent density of $4nA\;cm^{-2}$ at 0 V under UV light (365 nm) and a low saturation current density of $2.02nA{\times}cm^{-2}$. The device under UV light displayed fast photoresponse with times of 31.69 ms (rise-time) and 35.12 ms (fall-time) and a remarkable photoresponse ratio of 69.37. We analyzed the optical and electrical properties of the $NiO/SnO_2$ device. We demonstrated that the excellent properties of $SnO_2$ are valuable in transparent photoelectric device applications, which can suggest various routes for improving the performance of such devices.
Keywords
$SnO_2$; Photodetector; Photo-response; P-NiO; ITO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Tian, T. Zhai, C. Zhang, S. L. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg, and Y. Bando, Adv. Mater., 25, 4625 (2013). [DOI: https://doi.org/10.1002/adma.201301828]   DOI
2 K. Ravichandran, B. Sakthivel, and P. Philominathan, Cryst. Res. Technol., 45, 292 (2010). [DOI: https://doi.org/10.1002/crat.200900594]   DOI
3 J. Bandara, C. M. Divarathne, and S. D. Nanayakkara, Sol. Energy Mater. Sol. Cells, 81, 429 (2004). [DOI: https://doi.org/10.1016/j.solmat.2003.11.027]   DOI
4 A. Kar and A. Patra, Trans. Indian Ceram. Soc., 72, 89 (2013). [DOI: https://doi.org/10.1080/0371750X.2013.828990]   DOI
5 J. M. Ni, X. J. Zhao, and J. Zhao, J. Inorg. Organomet. Polym. Mater., 22, 21 (2012). [DOI: https://doi.org/10.1007/s10904-011-9619-y]   DOI
6 S. Shao, X. Qiu, D. He, R. Koehn, N. Guan, X. Lu, N. Bao, and C. A. Grimes, Nanoscale, 3, 4283 (2011). [DOI: https://doi.org/10.1039/c1nr10678c]   DOI
7 J. Gong, H. Qiao, S. Sigdel, H. Elbohy, N. Adhikari, Z. Zhou, K. Sumathy, Q. Wei, and Q. Qiao, AIP Adv., 5, 067134 (2015). [DOI: https://doi.org/10.1063/1.4922626]   DOI
8 C. Prasittichai and J. T. Hupp, J. Phys. Chem. Lett., 1, 1611 (2010). [DOI: https://doi.org/10.1021/jz100361f]   DOI
9 H. Peelaers, E. Kioupakis, and C. G. Van De Walle, Appl. Phys. Lett., 100, 011914 (2012). [DOI: https://doi.org/10.1063/1.3671162]   DOI
10 S. H. Yu, C. H. Jia, H. W. Zheng, L. H. Ding, and W. F. Zhang, Mater. Lett., 85, 68 (2012). [DOI: https://doi.org/10.1016/j.matlet.2012.06.108]   DOI
11 M. Patel, H. S. Kim, and J. Kim, Adv. Electron. Mater., 1, 1500232 (2015). [DOI: https://doi.org/10.1002/aelm.201500232]   DOI