Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.10.805

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films  

Kim, Geun-Woo (School of Nano & Advanced Materials Engineering, Changwon National University)
Seo, Yong-Jun (School of Nano & Advanced Materials Engineering, Changwon National University)
Sung, Chang-Hoon (School of Nano & Advanced Materials Engineering, Changwon National University)
Park, Keun-Young (School of Nano & Advanced Materials Engineering, Changwon National University)
Cho, Ho-Je (School of Nano & Advanced Materials Engineering, Changwon National University)
Heo, Si-Nae (School of Nano & Advanced Materials Engineering, Changwon National University)
Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.10, 2012 , pp. 805-810 More about this Journal
Abstract
Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.
Keywords
TCO; Co-doping; Densification; PLD; Thin film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. N. Van Den Donker, A. Gordijn, H. Stiebig, F. Finger, B. Rech, B. Stannowski, R. Bartl, E.A.G. Hamers, R. Schlatmann, and G. J. Jongerden, Sol. Energy Mater. Sol. Cells, 91, 572 (2007).   DOI
2 V. Hopfe and D. W. Sheel, Plasma Process. Polym., 4, 253 (2007).   DOI
3 W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Optics, 20, 1333 (1981).   DOI
4 D. Belanger, J. P. Dodelet, B. A. Lombos, and J. I. Dickson, J. Elec. Trochem. Soc., 132, 1398 (1985).   DOI
5 A. M. K. Dagamseh, B. Vet, F. D. Tichelaar, P. Sutta, and M. Zeman, Thin Solid Films, 516, 7844 (2008).   DOI
6 S. G. Ansari, S. W. Gosavi, S. A. Gangal, R. N. Karekar, and R. C. Aiyer, Journal of Materials Science: Materials in Electronics, 8, 23 (1997).   DOI
7 K. H. Kim and C. G. Park, J. Elec. Trochem. Soc., 138, 2408 (1991).   DOI
8 Z. M. Jarzebski and J. P. Marton, J. Elec. Trochem. Soc.,: ReViews and News, 123, 199 (1976).
9 A. F. Carroll and L. H. Slack, J. Elec. Trochem. Soc., 123, 1889 (1976).   DOI
10 H. Toyosaki, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 93, 132109 (2008).   DOI
11 A. Kurz, K. Brakecha, J. Puetz, and M. A. Aegerter, Thin Solid Films, 502, 212 (2006).   DOI
12 S. W. Lee, Y. W. Kim, and H. Chen, Appl. Phys. Lett., 78, 350 (2001).   DOI
13 D. Li, X. Fang, Z. Deng, W. Dong, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu: J. Alloys Comp., 486, 462 (2009).   DOI
14 K. Tonooka and N. Kikuchi, Thin Solid Films, 515, 2415 (2006).   DOI
15 A. M. K. Dagamseh, B. Vet, F. D. Tichelaar, P. Sutta, and M. Zeman, Thin Solid Films, 516, 7844 (2008).   DOI
16 Y. H. Jung, E. S. Lee, B. Munir. R. A, Wibowo, and K. H. Kim, J. Kor. Inst. Surf. Eng., 38, 150 (2005).
17 C. Y. and C. H., Sol. Energ. Mat. Sol., C92, 530 (2008).
18 T. Minami, MRS Bulletin, 25, 38 (2000).
19 K. Ellmer, J. Phys. D: Appl. Phys., 34, 3097 (2001).   DOI   ScienceOn
20 J. F. Carlin, U. S. Geological Sruvey, Mineral Commodity Summaries (2006).
21 Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, ACS Nano, 3, 1373 (2009).   DOI
22 F. Rohlfing, D. Brezesinski, T. Rathousky, J. Feldhoff, A. Oekermann, T. Wark, M. B. Smarsly, Adv. Mater., 18, 2980 (2006).   DOI
23 F. J. Yusta, M. L. Hitchman, and H,Shamlian, J. Mater. Chem., 7, 1421 (1997).   DOI
24 T. P. Chow, M. Ghezzo, and B. J. Baliga, J. Elec. Trochem. Soc., 129, 1040 (1982).   DOI
25 E. Shanthi, V. Dutta, A. Banerjee, and K. L. Chopra, J. Appl. Phys., 51, 6243 (1981).
26 J. Bruneaux, H. Cachet, M. Froment, and A. Messad, Electrochemica Acta, 39, 1251 (1994).   DOI
27 J. Springer, A. Poruba, and M. Vanecek, J. Appl. Phys., 96, 5329 (2004).   DOI