• Title/Summary/Keyword: Transmission line pressure

Search Result 95, Processing Time 0.026 seconds

Pressure Control of a Pneumatic Conrol system with a long Transmission Line (긴 전달관로를 갖는 공압제어계의 압력 제어)

  • Jang, Ji-Seong;Lee, Kwang-Kuk;Choi, Myung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.567-576
    • /
    • 2003
  • In this study, a robust controller to control pressure in a pneumatic pressure vessel with a long transmission line is proposed. Frequency response of transmission line using compressible fluid is changed by the flowing state of the fluid. So, it a fixed gain controller designed based on a model supposed the flowing state to a specific state, the performance of the control system could be degraded because of the modelling error. The controller designed in this study is composed of two parts. One is a feedback controller to improve a feedback characteristics and to compensate the influence of the variation of transfer characteristics of a transmission line owing to the change of flowing state and the other is a feedforward controller to regulate command fallowing performance. The experimental results with the designed controller show that the robustness of the control system is achieved regardless of the change of the model or the transmission line. Therefore, the designed controller can be utilized for the Performance improvement of a Pressure control system with a long transmission line using compressible fluid.

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

A Study on the Pressure Control of a Pneumatic Pressure Vessel Considering Dynamic Characteristics of Pneumatic Transmission Line (관로부의 동특성을 고려한 공기압 압력용기의 압력제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.90-96
    • /
    • 2001
  • In this study, a robust controller to control pressure in a pneumatic pressure vessel considering dynamic characteristics of pneumatic transmission line is proposed. Dynamic characteristics of transmission line using compressible fluid is changed by the flowing states of the fluid. So, if the fixed gain controller is designed based on a fixed model, the performance of the control system could be destabilized or degraded. The controller designed in this study is composed of two parts. The one is to reject modelling error based on the disturbance observer, the other is to obtain the control performance. The control results with the designed controller show that the robustness of the control system is achieved regardless of the change of the model of the transmission line. Therefore, the designed controller can be utilized for the performance improvement of the pressure control system using compressible fluid such as air and gas

  • PDF

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

The Effect of Load Impedances on the Frequency Response of Pressure Propagation in the Pneumatic Transmission Line (기체 전달 관로에 있어서 압력 전파의 주파수 응답에 대한 부하 임피던스의 영향)

  • Yoon, S.J.;Son, B.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.344-353
    • /
    • 1994
  • This study numerically analyzed the dynamic characteristics of the frequency response on the pneumatic transmission line with load impedances. The pressure transfer function is represented by the distributed parameter line model. To validate the mathematical approximations of Bessel function ratios, the results of frequency response in a blocked line were compared with those obtained by the Infinite-product, Brown's and Square-root approximations. Special emphasis was given to the frequency response characteristics on the pneumatic transmission line with load impedances. Computations were carried out for the wide range of parameters in terms of load capacitance ratio and load resistance ratio. The present results indicated that the theoretical model is capable of accurately predicting the frequency response characteristics for any configuration of a fluid transmission line.

  • PDF

Analysis and Countermeasures of 345kV Incheon-TP Overhead Transmission Lines Collapse (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Min, Byeong-Wook;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.323_324
    • /
    • 2009
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

  • PDF

Introduction of the Design Standard of Tower for Overhead Transmission Line in KEPCO (가공송전용 철탑설계기준(안) 소개 및 주요내용 해설)

  • Kim, K.H.;Woo, J.W.;Shim, E.B.;Shin, T.W.;You, C.H.;Bang, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.351-353
    • /
    • 2002
  • Up to now the design standard of tower for overhead transmission line in KEPCO was revised four times since 1970. During last year. we had reviewed this design standard. This paper shows the design standard of tower for overhead transmission line in KEPCO. In this standard, a kind of tower was defined as standard tower and special tower. Also we had defined usage range of standard tower, tower height, arrangement of power line, design condition of tower arm and etc. On the wind pressure, we had defined basic velocity pressure per region and maximum wind pressure. For special region, design wind pressure will be considered the receded wind velocity of meteorological observatory and regional condition by this standard.

  • PDF

An Experimental Study on the Transmission Line Pressure Control System Using Bleed Type Variable Force Solenoid (블리드 방식 가변력 솔레노이드를 사용한 라인압력 제어계의 실험적 연구)

  • Choi, Deuk-Hwan;Chin, Young-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.703-707
    • /
    • 2007
  • The line pressure control system for an automotive transmission in which a bleed type variable force solenoid(VFS) is applied, has been constructed and experimentally investigated. The hydraulic circuit of the system includes a line pressure control valve, a reducing valve, an accumulator, various orifices and a VFS. Static and dynamic responses of the throttle and line pressure have been monitored and discussed for various test conditions.

  • PDF

An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures (배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구)

  • Kim, Sung Dong;Joo, Byeol Jin;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line (관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링)

  • Jang, Ji-Seong;Kang, Bo-Sik;Ji, Sang-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF