• Title/Summary/Keyword: Transmission Loss (TL)

Search Result 67, Processing Time 0.026 seconds

Acoustic Transmission Loss Measurement of the Exhaust System with TL Tube (TL 튜브를 이용한 소음기의 음향 전달 손실 계측법)

  • 류윤선;김윤석;이성홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.770-773
    • /
    • 2004
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the acoustic transmission loss measurement system using 4-microphone TL tube is applied to the exhaust system, which is one of the most important acoustic control parameters in a car, based on the idea calculating the full transfer matrix. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

An Estimation of the Sound Insulation Performance of the Multi-layered Panel for a Tilting Train (틸팅 차량용 적층재의 차음성능 평가)

  • Seo, Tae-Gun;Lim, Bong-Gi;Kim, Seock-Hyun;Kim, Jae-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.597-600
    • /
    • 2009
  • Sound transmission loss (TL) is experimently investigated on the multi-layered panel used for the floor of a tilting train. Measurement of the intensity transmission loss is performed according to ASTM E 2249-02. The floor structure consists of corrugated steel panel, glass wool, plywood and cover. On the corrugated steel panel, TL drop by local resonance is considered and the TL improvement effect by damping treatment is estimated. Total sound transmission loss of the entire floor structure is obtained and the contribution of each layer is examined.

  • PDF

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

Development of a Formula for Acoustic Transmission Loss According to Partition Positions in a Simple Expansion Chamber (단순확장관 내부 파티션 위치에 따른 음향투과손실 계산식의 개발)

  • Park, Jeong-Pil;Bae, Kyeong-Won;Jeong, Weui-Bong;Ahn, Se-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2015
  • This paper proposed a new formula for predicting acoustic power transmission loss of simple expansion chamber with two internal partitions. Seventeen cases of computational results were performed and the database was constructed for the TL according to the various positions of internal partitions. Using this database, firstly, the formula for the peak values of TL at certain frequencies was developed using the least square estimation. Secondly, the formula for the TL curve could be obtained automatically with the input data of the positions of two internal partitions. The formula of TL developed in this paper showed good agreement with computational results. This formula will be helpful for the positioning of internal partitions to improve TL at target frequencies.

Sound Insulation Design of the Corrugated Steel Panel Considering Local Resonance (국부 공진을 고려한 주름강판의 차음 설계)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Jung-Tae;Kim, Jae-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.672-676
    • /
    • 2010
  • In a railway vehicle, corrugated steel panel is widely used for the floor structure because of its high bending stiffness and light weight. However, this panel shows lower sound insulation performance than that of the flat plate with the same weight. Especially, in a particular frequency region, transmission loss(TL) rapidly decreases and it results in the deterioration of sound insulation performance of the overall floor structure. This study identifies that the severe decrease in TL is caused from the local resonance of the periodic corrugated structure. TL decrease by local resonance is investigated by experiment and finite element analysis. Finally, design modification of the corrugation is proposed to improve TL and the effect is verified by experiment.

Underwater Acoustic Environment and Low Frequency Acoustic Transmission in the Sub-Polar Front Region of the East Sea (동해 아극전선 해역의 수중음향환경 및 저주파 음파전달 양상)

  • Lim, Se-Han;Ryu, Gun-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • To investigate low frequency acoustic transmissions in the Sub-Polar Front(SPF) of the East Sea, numerical experiments are conducted with Range dependent Acoustic Model(RAM) using Circulation Research of the East Asian Marginal Seas(CREAMS) data and Autonomous Profiling Explorer(APEX)) data. Significant seasonal variations of sea water properties are existed across the Sub-Polar Front(SPF) region from the north and the south. The model results show that Transmission Loss(TL) decrease(about 20dB) with ideal front in the warm region whereas TL increase(about 25dB) with ideal front in the cold region. Regardless of season(both in summer and winter), when the sound source is located in the cold region of the SPF, the model results show weak TL, compared to the case of the source in the warm region(Maximum difference of TL reaches 28dB). This difference between the cases when the source is located in the cold region and the warm region, is accounted for from the different vertical profiles of sound speed in both regions.

Acoustical Performance Analysis of Simple Expansion Silencer using Lattice Boltzmann Method (격자 볼츠만법을 이용한 단순 확장형 소음기 음향특성 해석)

  • Lee, Songjune;Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.966-972
    • /
    • 2014
  • The Lattice Boltzmann Method (LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics, and its intrinsic unsteadiness and weak numerical damping make it more suitable for aeroacoustic problems. In this paper, applicability of the LBM for solving flow noise problems is tested by applying it to predict transmission loss of a simple expansion silencer. The time history of the static pressure is recorded at the inlet and outlet pipes. The transmission loss (TL) of the muffler is computed by using three point method and two source method, respectively. The TL calculated using the LBM is compared with that computed using finite element method (FEM) and measured data. It is found through these comparisons that the LBM is capable of predicting TL of the simple expansion silencer accurately, which it is difficult to predict using the conventional CFD methods based on the RANS solvers.

  • PDF

Evaluation Method of the Transmission Loss for Railway Vehicle Structures. (철도차량 구조물의 TL 시험 평가 기법)

  • 김운경;김정태
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.155-161
    • /
    • 2001
  • In order to evaluate the sound transmission loss of a structure, a large reverberation room described by ISO is generally used. ISO test method is however for architectural structures, which is not properly implemented for small mechanical structures, such as rolling stocks. In this paper, evaluation procedure for railway vehicle structures has been proposed.

  • PDF

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF

Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea (동중국해 북부해역에서 음파전달 특성의 시공간적 변동성)

  • Park, Kyeongju;Chu, Peter Cheng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.