• Title/Summary/Keyword: Transition metal oxide

Search Result 169, Processing Time 0.028 seconds

Metal-Insulator Transition of Vanadium Dioxide Based Sensors (바나듐 산화물의 금속-절연체 전이현상 기반 센서 연구)

  • Baik, Jeong Min
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.314-319
    • /
    • 2014
  • Here, we review the various methods for the preparation of vanadium dioxide ($VO_2$) films and nanowires, and their potential applications to the sensors such as gas sensor, strain sensor, and temperature sensor. $VO_2$ is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition (MIT) at ${\sim}68^{\circ}C$ in the bulk. The MIT is also triggered by the electric field, stress, magnetic field etc. This paper involves exceptionally sensitive hydrogen sensors based on the catalytic process between hydrogen molecules and Pd nanoparticles on the $VO_2$ surface, and fast responsive sensors based on the self-heating effects which leads to the phase changes of the $VO_2$. These features will be seen in this paper and can enable strategies for the integration of a $VO_2$ material in advanced and complex functional units such as logic gates, memory, FETs for micro/nano-systems as well as the sensors.

Non-stoichiometry-induced metal-to-insulator transition in nickelate thin films grown by pulsed laser deposition

  • Lee, Jongmin;Choi, Kyoung Soon;Lee, Tae Kwon;Jeong, Il-Seok;Kim, Sangmo;Song, Jaesun;Bark, Chung Wung;Lee, Joo-Hyoung;Jung, Jong Hoon;Lee, Jouhahn;Kim, Tae Heon;Lee, Sanghan
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1577-1582
    • /
    • 2018
  • While controlling the cation contents in perovskite rare-earth nickelate thin films, a metal-to-insulator phase transition is reported. Systematic control of cation stoichiometry has been achieved by manipulating the irradiation of excimer laser in pulsed laser deposition. Two rare-earth nickelate bilayer thin-film heterostructures with the controlled cation stoichiometry (i.e. stoichiometric and Ni-excessive) have been fabricated. It is found that the Ni-excessive nickelate film is structurally less dense than the stoichiometric film, albeit both of them are epitaxial and coherent with respect to the underlying substrate. More interestingly, as a temperature decreases, a metal-to-insulator transition is only observed in the Ni-excessive nickelate films, which can be associated with the enhanced disproportionation of the Ni charge valence. Based on our theoretical results, possible origins (e.g. anti-site defects) of the low-temperature insulating state are discussed with the need of future work for deeper understanding. Our work can be utilized to realize unusual physical phenomena (e.g. metal-to-insulator phase transitions) in complex oxide films by manipulating the chemical stoichiometry in pulsed laser deposition.

Trend and Issues of van der Waals 2D Semiconductor Devices (반데르발스 2차원 반도체소자의 응용과 이슈)

  • Im, Seongil
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.18-22
    • /
    • 2018
  • wo dimensional (2D) van der Waals (vdW) nanosheet semiconductors have recently attracted much attention from researchers because of their potentials as active device materials toward future nano-electronics and -optoelectronics. This review mainly focuses on the features and applications of state-of-the-art vdW 2D material devices which use transition metal dichalcogenides, graphene, hexagonal boron nitride (h-BN), and black phosphorous: field effect transistors (FETs), complementary metal oxide semiconductor (CMOS) inverters, Schottky diode, and PN diode. In a closing remark, important remaining issues of 2D vdW devices are also introduced as requests for future electronics and photonics applications.

A review of smart exsolution catalysts for the application of gas phase reactions (기상 반응용 스마트 용출 촉매 연구 동향)

  • Huang, Rui;Kim, Hyung Jun;Han, Jeong Woo
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.211-230
    • /
    • 2020
  • Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.

A Study of On-line Cleaning Method for Increasing Efficiency in a Combustor (연소로 효율증진을 위한 on-line 세정 방법에 관한 연구)

  • Jang, Hyun-Tae;Han, Seung-Dong;Park, Tae-Sung;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1016-1022
    • /
    • 2010
  • An Experimental study of cleaning solution has been performed on a high capacity steam boiler burning heavy fuel oil to on-line cleaning of deposit. The deposit is mixture of soot, slag, ash, metal oxide and clinker. The traditional technology of deposit cleaning was carried hand-crafted. The conventional technology of boiler cleaning method is mechanical removal by the worker while the boiler shut down operation. In this experiment, the deposit of mixture of soot, slag, ash, metal oxide and clinker has been removed by the cleaning agents without shut down of boiler burning. This study found out the optimum cleaning solution composition. The best results have been obtained when the mixture of ammonium nitrate and $MgNO_3$ were used in cleaning solution. The various transition metal effect was investigated for optimum mixing condition. In this research, the metal compound additive of the clean solution compoition was obtained. The combustion efficiency was improved by on-line cleaning with derived clean solution compoition. On-line cleaning method prevents the fouling and corrosion in the boiler and heat exchanger.

Property differences between GTAW and SMAW duplex stainless steel weld metal (이상계 스테인레스 강 용접부의 인성과 내식성 거동)

  • 백광기;김희진;안상곤
    • Journal of Welding and Joining
    • /
    • v.4 no.3
    • /
    • pp.58-71
    • /
    • 1986
  • Mechanical and corrosion property of duplex stainless steel weldments made by the GTAW and SMAW process were studied. Fracture toughness, general and local corrosion resistance of GTAW and SMAW weldments were evaluated in terms of Charpy V notch impact test, anodic polarization diagram, pitting corrosion rate, respectively. SMA weld metal showed much lower impact toughness and higher ductile-brittle transition temperature than GTA weld metal. Fractographic and EDX analysis on fracture surface of SMA weld metal demonstrated the existence of (Si, Ti), oxide in large amounts. Potentiodynamic anodic polarization diagram of GMA weld metal showed much lower passive current density than SMA weld metal in 4% $H_2/SO_4$ solution. And pitting corrosion rate test showed the same tendency. Relating the microstructure, chemistry and property, it can be concluded that GTA weld metal gives better toughness due to lower oxygen content, i.e. lower inclusion content, and better corrosion resistance due to higher Pitting Index(PI) than SMA weld metal.

  • PDF

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

A Study on Activity Testing of Various Catalysts for Hydrogen Production from Ammonia (암모니아로부터 수소 제조를 위한 다양한 촉매 활성 테스트에 관한 연구)

  • JAE-HYEOK LEE;KYOUNG-HA SHIN;JINSIL KANG;HYEONHUI SHIN;SEYEON PARK;YUJIN CHOI;WANGYU SONG;HO-GEUN AHN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.587-593
    • /
    • 2023
  • This research project focused on the production of hydrogen through ammonia decomposition reactions while investigating how the reactivity of this process varies when employing different catalysts. Several metal oxide supports (Al2O3, La2O3, CeO2) were utilized as catalysts, with active metals from both the transition metal group (Co, Ni, Fe, Cr, Cu) and the noble metal group (Ru, Rh, Pd, Pt) impregnated onto these supports. Furthermore, the study examined how the reactivity evolves with changes in reaction temperature when employing the prepared catalysts. Additionally, the research delved into the distinctive activation energies associated with each of the catalysts. In this research, In the noble metal catalyst system, the order of high activity for ammonia decomposition reaction to produce hydrogen is Ru > Rh > Pt ≈ Pd. In the transition metal catalyst system, the order of high activity is Co > Ni > Fe > Cr > Cu.

Decomposition of Toluene by γ-Al2O3 Catalysts Impregnated with Transition Metal (전이금속을 함침한 γ-Al2O3 촉매의 Toluene 분해)

  • Choi, Sung-Woo;Lee, Chul-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.945-951
    • /
    • 2013
  • Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with $Al_2O_3$ catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition $metals/Al_2O_3$. $Mn/Al_2O_3$ catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%$Mn/Al_2O_3$ catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of $289^{\circ}C$.