Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.2.05

A review of smart exsolution catalysts for the application of gas phase reactions  

Huang, Rui (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH))
Kim, Hyung Jun (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH))
Han, Jeong Woo (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Ceramist / v.23, no.2, 2020 , pp. 211-230 More about this Journal
Abstract
Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.
Keywords
exsolution catalysts; gas phase reaction; smart catalyst; perovskite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kwon, O.; Sengodan, S.; Kim, K.; Kim, G.; Jeong, H. Y.; Shin, J.; Ju, Y. W.; Han, J. W.; Kim, G. "Exsolution Trends and Co-Segregation Aspects of Self-Grown Catalyst Nanoparticles in Perovskites." Nat. Commun., 8 15967 (2017).   DOI
2 Koo, B.; Kim, K.; Kim, J. K.; Kwon, H.; Han, J. W.; Jung, W. "Sr Segregation in Perovskite Oxides: Why It Happens and How It Exists." Joule, 2 [8] 1476-1499 (2018).   DOI
3 Kim, K.; Lim, C.; Han, J. W. "Computational Approaches to The Exsolution Phenomena in Perovskite Oxides with A View To Design Highly Durable and Active Anodes for Solid Oxide Fuel Cells." Korean J. Chem. Eng., in press (2020).
4 Neagu, D.; Oh, T. S.; Miller, D. N.; Menard, H.; Bukhari, S. M.; Gamble, S. R.; Gorte, R. J.; Vohs, J. M.; Irvine, J. T. S. "Nano-Socketed Nickel Particles with Enhanced Coking Resistance Grown In Situ by Redox Exsolution." Nat. Commun., 6 8120 (2015).   DOI
5 Li, S.; Qin, Q.; Xie, K.; Wang, Y.; Wu, Y. "High-Performance Fuel Electrodes Based on $NbTi_{0.5}M_{0.5}O_4$ (M = Ni, Cu) with Reversible Exsolution of The Nano-Catalyst for Steam Electrolysis." J. Mater. Chem. A, 1 [31] (2013).
6 Pilger, F.; Testino, A.; Carino, A.; Proff, C.; Kambolis, A.; Cervellino, A.; Ludwig, C. "Size Control of Pt Clusters on $CeO_2$ Nanoparticles via An Incorporation-Segregation Mechanism and Study of Segregation Kinetics." ACS Catal., 6 [6] 3688-3699 (2016).   DOI
7 Kurnatowska, M.; Kepinski, L.; Mista, W. "Structure Evolution of Nanocrystalline $Ce_{1-x}Pd_xO_{2-y}$ Mixed Oxide In Oxidizing And Reducing Atmosphere: Reduction-Induced Activity in Low-Temperature CO Oxidation." Appl. Catal., B : Environmental 117-118 135-147 (2012).   DOI
8 Kurnatowska, M.; Schuster, M. E.; Mista, W.; Kepinski, L. "Self-Regenerative Property of Nanocrystalline $Ce_{0.89}M_{0.11}O_{2-y}$(M=Pd, Rh) Mixed Oxides." ChemCatChem, 6 [11] 3125-3131 (2014).   DOI
9 Gan, L.; Ye, L.; Ruan, C.; Chen, S.; Xie, K. "Redox-Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer." Adv. Sci., (Weinh) 3 [2] 1500186 (2016).   DOI
10 Papargyriou, D.; Miller, D. N.; Sirr Irvine, J. T. "Exsolution of Fe-Ni Alloy Nanoparticles from $(La,Sr)(Cr,Fe,Ni)O_3$ Perovskites as Potential Oxygen Transport Membrane Catalysts for Methane Reforming." J. Mater. Chem. A, 7 [26] 15812-15822 (2019).   DOI
11 Lai, K.-Y.; Manthiram, A. "Evolution of Exsolved Nanoparticles on A Perovskite Oxide Surface during A Redox Process." Chem. Mater., 30 [8] 2838-2847 (2018).   DOI
12 Katz, M. B.; Graham, G. W.; Duan, Y.; Liu, H.; Adamo, C.; Schlom, D. G.; Pan, X. "Self-Regeneration of Pd-$LaFeO_3$ Catalysts: New Insight from Atomic-Resolution Electron Microscopy." J. Am. Chem. Soc., 133 [45] 18090-3 (2011).   DOI
13 Steiger, P.; Nachtegaal, M.; Krocher, O.; Ferri, D. Reversible Segregation of Ni in $LaFe_{0.8}Ni_{0.2}O_{3{\pm{\delta}$ during Coke Removal. ChemCatChem, 10 [19] 4456-4464 (2018).   DOI
14 Steiger, P.; Delmelle, R.; Foppiano, D.; Holzer, L.; Heel, A.; Nachtegaal, M.; Krocher, O.; Ferri, D. "Structural Reversibility and Nickel Particle Stability in Lanthanum Iron Nickel Perovskite-Type Catalysts." ChemSusChem, 10 [11] 2505-2517 (2017).   DOI
15 Sun, Y. F.; Li, J. H.; Cui, L.; Hua, B.; Cui, S. H.; Li, J.; Luo, J. L. "Correction: A-site-deficiency Facilitated In Situ Growth of Bimetallic Ni-Fe Nano-Alloys: A Novel Coking-Tolerant Fuel Cell Anode Catalyst." Nanoscale, 9 [2] 947 (2017).   DOI
16 Zhu, X.; Li, K.; Neal, L.; Li, F. "Perovskites as Geo-Inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A Perspective." ACS Catal., 8 [9] 8213-8236 (2018).   DOI
17 Uenishi, M.; Tanaka, H.; Taniguchi, M.; Tan, I.; Nishihata, Y.; Mizuki, J. i.; Kobayashi, T. "Time Evolution of Palladium Structure Change with Redox Fluctuations in a $LaFePdO_3$ Perovskite Automotive Catalyst by High-Speed Analysis with In Situ DXAFS." Catal. Commun., 9 [2] 311-314 (2008).   DOI
18 Keav, S.; Matam, S.; Ferri, D.; Weidenkaff, A. "Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters-A Review." Catalysts, 4 [3] 226-255 (2014).   DOI
19 Uenishi, M.; Taniguchi, M.; Tanaka, H.; Kimura, M.; Nishihata, Y.; Mizuki, J.; Kobayashi, T. "Redox Behavior of Palladium at Start-Up in the Perovskite-Type $LaFePdO_x$ Automotive Catalysts Showing A Self-Regenerative Function." Appl. Catal., B : Environmental 57 [4] 267-273 (2005).   DOI
20 Tanaka, H.; Taniguchi, M.; Uenishi, M.; Kajita, N.; Tan, I.; Nishihata, Y.; Mizuki, J.; Narita, K.; Kimura, M.; Kaneko, K. "Self-Regenerating Rh- and Pt-Based Perovskite Catalysts for Automotive-Emissions Control." Angew. Chem., Int. Ed. Engl., 45 [36] 5998-6002 (2006).   DOI
21 Taniguchi, M.; Tanaka, H.; Uenishi, M.; Tan, I.; Nishihata, Y.; Mizuki, J. i.; Suzuki, H.; Narita, K.; Hirai, A.; Kimura, M. "The Self-Regenerative Pd-, Rh-, and Pt-Perovskite Catalysts." Top. Catal., 42-43 [1-4] 367-371 (2007).   DOI
22 Steiger, P.; Krocher, O.; Ferri, D. Increased Nickel Exsolution from $LaFe_{0.8}Ni_{0.2}O_3$ Perovskite-Derived $CO_2$ Methanation Catalysts Through Strontium Doping." Appl. Catal., A : General 590 (2020).
23 Tada, S.; Ono, T.; Kikuchi, R. "Regeneration Behavior of Reforming Catalysts Based on Perovskite Oxides $LaM_{0.95}Rh_{0.05}O_3$ (M: Cr, Co, Fe) by Redox Treatment." Fuel, 269 (2020).
24 Papaioannou, E. I.; Neagu, D.; Ramli, W. K. W.; Irvine, J. T. S.; Metcalfe, I. S. "Sulfur-Tolerant, Exsolved Fe-Ni Alloy Nanoparticles For CO Oxidation." Top. Catal., 62 [17-20] 1149-1156 (2018).   DOI
25 Malamis, S. A.; Harrington, R. J.; Katz, M. B.; Koerschner, D. S.; Zhang, S.; Cheng, Y.; Xu, L.; Jen, H.-W.; McCabe, R. W.; Graham, G. W.; Pan, X. "Comparison of Precious Metal Doped and Impregnated Perovskite Oxides For TWC Application." Catal. Today, 258 535-542 (2015).   DOI
26 Tang, C.; Kousi, K.; Neagu, D.; Portoles, J.; Papaioannou, E. I.; Metcalfe, I. S. "Towards Efficient Use of Noble Metals via Exsolution Exemplified for CO Oxidation." Nanoscale, 11 [36] 16935-16944 (2019).   DOI
27 Neagu, D.; Tsekouras, G.; Miller, D. N.; Menard, H.; Irvine, J. T. "In Situ Growth of Nanoparticles through Control of Non-Stoichiometry." Nat. Chem., 5 [11] 916-23 (2013).   DOI
28 Neagu, D.; Papaioannou, E. I.; Ramli, W. K. W.; Miller, D. N.; Murdoch, B. J.; Menard, H.; Umar, A.; Barlow, A. J.; Cumpson, P. J.; Irvine, J. T. S.; Metcalfe, I. S. "Demonstration of Chemistry at A Point through Restructuring and Catalytic Activation at Anchored Nanoparticles." Nat. Commun., 8 [1] 1855 (2017).   DOI
29 Dimitrakopoulos, G.; Ghoniem, A. F.; Yildiz, B. "In Situ Catalyst Exsolution on Perovskite Oxides for The Production of CO and Synthesis Gas In Ceramic Membrane Reactors." Sustainable Energy Fuels, 3 [9] 2347-2355 (2019).   DOI
30 Park, Y. S.; Kang, M.; Byeon, P.; Chung, S.-Y.; Nakayama, T.; Ko, T.; Hwang, H. "Fabrication of A Regenerable Ni Supported NiO-MgO Catalyst for Methane Steam Reforming by Exsolution." J. Power Sources, 397 318-324 (2018).   DOI
31 Padi, S. P.; Shelly, L.; Komarala, E. P.; Schweke, D.; Hayun, S.; Rosen, B. A. "Coke-Free Methane Dry Reforming Over Nano-Sized NiO-$CeO_2$ Solid Solution after Exsolution." Catal. Commun., 138 (2020).
32 Roh, H. "Methane-Reforming Reactions over $Ni/Ce-ZrO_2/{\theta}Al_2O_3$ Catalysts." Appl. Catal., A: General 251 [2] 275-283 (2003).   DOI
33 Lindenthal, L.; Rameshan, R.; Summerer, H.; Ruh, T.; Popovic, J.; Nenning, A.; Loffler, S.; Opitz, A. K.; Blaha, P.; Rameshan, C. Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution. Catalysts, 10 [3] 1-14 (2020).   DOI
34 Tanaka, H.; Misono, M. "Advances in Designing Perovskite Catalysts." Curr Opin Solid St M 5 [5] 381-387 (2001).   DOI
35 Nishihata, Y.; J.Mizuki; T.Akao; H.Tanaka; M.Uenishi; M.Kimura; T.Okamoto; N.Hamada "Self-Regeneration of A Pd-Perovskite Catalyst for Automotive Emissions Control." Nature, 418 [6894] 164-167 (2002).   DOI
36 Kim, J. H.; Park, Y. M.; Kim, T.; Kim, H. "Characterizations of Composite Cathodes With $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ and $Ce_{0.9}Gd_{0.1}O_{1.95}$ for Solid Oxide Fuel Cells." Korean J. Chem. Eng., 29 [3] 349-355 (2011).   DOI
37 Kwon, O.; Kim, K.; Joo, S.; Jeong, H. Y.; Shin, J.; Han, J. W.; Sengodan, S.; Kim, G. "Self-assembled Alloy Nanoparticles in A Layered Double Perovskite as A Fuel Oxidation Catalyst for Solid Oxide Fuel Cells." J. Mater. Chem. A, 6 [33] 15947-15953 (2018).   DOI
38 Jo, Y. R.; Koo, B.; Seo, M. J.; Kim, J. K.; Lee, S.; Kim, K.; Han, J. W.; Jung, W.; Kim, B. J. "Growth Kinetics of Individual Co Particles Ex-Solved on $SrTi_{0.75}Co_{0.25}O_3$-delta Polycrystalline Perovskite Thin Films." J. Am. Chem. Soc., 141 [16] 6690-6697 (2019).   DOI
39 Joo, S.; Kwon, O.; Kim, K.; Kim, S.; Kim, H.; Shin, J.; Jeong, H. Y.; Sengodan, S.; Han, J. W.; Kim, G. "Cation-Swapped Homogeneous Nanoparticles in Perovskite Oxides for High Power Density." Nat. Commun., 10 [1] 697 (2019).   DOI
40 Choi, M.; Ibrahim, I. A. M.; Kim, K.; Koo, J. Y.; Kim, S. J.; Son, J. W.; Han, J. W.; Lee, W. "Engineering of Charged Defects at Perovskite Oxide Surfaces for Exceptionally Stable Solid Oxide Fuel Cell Electrodes." ACS Appl. Mater. Interfaces, 12 [19] 21494-21504 (2020).   DOI
41 Jacobs, R.; Mayeshiba, T.; Booske, J.; Morgan, D. "Material Discovery and Design Principles For Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells." Adv. Energy Mater., 8 [11] (2018).
42 Reddy, B. M.; Bharali, P.; Saikia, P. "Structural Characterization and Catalytic Activity of Nanosized $Ce_xM_{1-x}O_2$ (M = Zr and Hf) Mixed Oxides." J. Phys. Chem. C, 112 11729-11737 (2008).   DOI
43 Kim, H. J.; Jang, M. G.; Shin, D.; Han, J. W. "Design of Ceria Catalysts for Low-Temperature CO Oxidation." ChemCatChem, 12 [1] 11-26 (2019).   DOI
44 Campisciano, V.; Gruttadauria, M.; Giacalone, F. "Modified Nanocarbons for Catalysis." ChemCatChem, 11 [1] 90-133 (2018).   DOI
45 Singhania, A. ; Gupta, S. M. "Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation." J. Nanosci. Nanotechnol., 18 [7] 4614-4620 (2018).   DOI
46 Tanaka, H.; Fujikawa, H.; Takahashi, l. "Perovskite-Pd Three-Way Catalysts for Automotive Applications." SAE Tech. Pap., 930251 63-76 (1993).
47 H.Tanaka; H.Fujikawa; I.Takahashi "Excellent Oxygen Storage Capacity of Perovskite-Pd Three-Way-Catalysts." SAE Tech. Pap., 950256 289-301 (1995).
48 Tanaka, H.; Uenishi, M.; tan, I. "An Intelligent Catalyst." SAE Tech. Pap., 01 [1301] (2001).