DOI QR코드

DOI QR Code

Metal-Insulator Transition of Vanadium Dioxide Based Sensors

바나듐 산화물의 금속-절연체 전이현상 기반 센서 연구

  • Baik, Jeong Min (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 백정민 (울산과학기술대학교 신소재공학과)
  • Received : 2014.08.25
  • Accepted : 2014.09.22
  • Published : 2014.09.30

Abstract

Here, we review the various methods for the preparation of vanadium dioxide ($VO_2$) films and nanowires, and their potential applications to the sensors such as gas sensor, strain sensor, and temperature sensor. $VO_2$ is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition (MIT) at ${\sim}68^{\circ}C$ in the bulk. The MIT is also triggered by the electric field, stress, magnetic field etc. This paper involves exceptionally sensitive hydrogen sensors based on the catalytic process between hydrogen molecules and Pd nanoparticles on the $VO_2$ surface, and fast responsive sensors based on the self-heating effects which leads to the phase changes of the $VO_2$. These features will be seen in this paper and can enable strategies for the integration of a $VO_2$ material in advanced and complex functional units such as logic gates, memory, FETs for micro/nano-systems as well as the sensors.

Keywords

References

  1. J. Wu, Q. Gu, B. S. Guiton, N. P. d. Leon, L. Ouyang, and H. Park, "Strain-induced self organization of metalinsulator domains in single-crystalline $VO_2$ nanobeams", Nano Lett., Vol. 6, No. 10, pp. 2313-2317, 2006. https://doi.org/10.1021/nl061831r
  2. A. Maeda, M. Notomi, K. Uchinokura, and S. Tanaka "Evidence for the existence of the inherent periodicity in the switched state at low temperatures in $K_{0.3}MoO_s$", Phys. Rev. B, Vol. 36, No. 1, p.7709, 1987. https://doi.org/10.1103/PhysRevB.36.7709
  3. B. Kim, Y. W. Lee, S. Choi, J. Lim, S. J. Yun, and H. Kim, "Micrometer x-ray diffraction study of $VO_2$ films: Separation between metal-insulator transition and structural phase transition", Phys. Rev. B, Vol. 77, No. 1, p.235401, 2008. https://doi.org/10.1103/PhysRevB.77.235401
  4. M. Seo, J. Kyoung, H. Park, S. Koo, H. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. Park, K. Ahn, and D. Kim, "Active terahertz nanoantennas based on $VO_2$ phase transition", Nano Lett., Vol. 10, No. 6, pp. 2064-2068, 2010. https://doi.org/10.1021/nl1002153
  5. R. Binions, G. Hyett, C. Piccirillo, and I. P. Parkin. "Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: The effects of thickness and crystallographic orientation on thermochromic properties", J. Mater. Chem., Vol. 17, No. 1, pp. 4652-4660, 2007. https://doi.org/10.1039/b708856f
  6. L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, "Electrical property of Mo-doped $VO_2$ nanowire array film by meltingquenching solgel method", J. Phys. Chem. B, Vol. 110, No. 39, pp. 19083-19086, 2006. https://doi.org/10.1021/jp0642701
  7. E. Baudrin, G. Sudant, D Larcher, B. Dunn, and J. M. Tarascon." Preparation of nanotextured $VO_2$[B] from vanadium oxide aerogels", Chem. Mater., Vol. 18, p.4369, 2006. https://doi.org/10.1021/cm060659p
  8. J. Rozen, R. Lopez, R. F. Haglund, Jr., and L. C. Feldman, "Two-dimensional current percolation in nanocrystalline vanadiumdioxide films", Appl. Phys. Lett., Vol. 88, No. 1, p. 081902, 2006. https://doi.org/10.1063/1.2175490
  9. J. F. D. Natale, P. J. Hood, and A. B. Harker, "Formation and characterization of grain-oriented $VO_2$ thin films", J. Appl. Phys., Vol. 66, No. 12, p. 5844, 1989. https://doi.org/10.1063/1.343605
  10. M. Nagashima and H. Wada, "Near infrared optical properties of laser ablated $VO_2$ thin films by ellipsometry", Thin Solid Films, Vol. 312, No. 1, pp. 61-65, 1998. https://doi.org/10.1016/S0040-6090(97)00360-X
  11. D. Ruzmetov, K. T. Zawilski, V. Narayanamurti, and S. Ramanathan, "Structure-functional property relationships in rf-sputtered vanadium dioxide thin films", J. Appl. Phys., Vol. 102, No. 11, p. 113715, 2007. https://doi.org/10.1063/1.2817818
  12. M. Nagashima and H. Wada, "The oxygen deficiency effect of $VO_2$ thin films prepared by laser ablation", J. Mater. Res., Vol. 12, No. 2, pp. 416-422, 1997. https://doi.org/10.1557/JMR.1997.0061
  13. B. S. Guiton, Q. Gu, A. L. Prieto, M. S. Gudiksen, and H. Park, "Single-crystalline vanadium dioxide nanowires with rectangular cross sections", J. Am. Chem. Soc., Vol. 127, No. 2, pp. 498-499, 2005. https://doi.org/10.1021/ja045976g
  14. M. H. Kim, B. Lee, S, Lee, C, Larson, J. M. Baik, C. T. Yavuz, S. Seifert, S. Vajda, R. E. Winans, M. Moskovits, G. D. Stucky, and A. M. Wodtke, "Growth of metal oxide nanowires from supercooled liquid nanodroplets", Nano Lett., Vol. 9, No. 129, pp. 4138-4146, 2009. https://doi.org/10.1021/nl902357q
  15. E. Strelcov, A. V. Davydov, U. Lanke,C. Watts, and A. Kolmakov, "In situ monitoring of the growth, intermediate phase transformations and templating of single crystal $VO_2$ nanowires and nanoplatelets", ACS Nano, Vol. 5, No. 4, pp. 3373-3384, 2011. https://doi.org/10.1021/nn2007089
  16. J. M. Baik, M. H. Kim, C. Larson, C. T. Yavuz, G. D. Stucky, A. M. Wodtke, and M. Moskovits, "Pd-sensitized single vanadium oxide nanowires: Highly responsive hydrogen sensing based on the metal-insulator transition", Nano Lett., Vol. 9, No. 12, pp. 3980-3984, 2009. https://doi.org/10.1021/nl902020t
  17. J. W. Byun, J. Park, S. Y. Kim, M. H. Kim, and J. M. Baik, "Unprecedented insulator-to-metal transition dynamics by heterogeneous catalysis in Pd-sensitized single vanadium oxide nanowires", J. Phys. Chem. C, Vol. 117, pp. 21864-21869, 2013. https://doi.org/10.1021/jp407273s
  18. J. Wei, H. Ji, W. Guo, A. H. Nevidomskyy, and D. Natelson, "Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams", Nanotechnol., Vol. 7, No. 1, pp. 357-362, 2012.
  19. W. Hong, J. B. Park, J. Yoon, B. Kim, J. I. Sohn, Y. B. Lee, T. Bae, S. Chang, and Y. S. Huh, "Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams", Nano Lett., Vol. 13, No. 4, pp. 1822-1828, 2013. https://doi.org/10.1021/nl400511x
  20. C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, J. Yang, C. Si, Z. Wu. and Y. Xie, "Hydrogen-incorporation stabilization of metallic $VO_2$(R) phase to room temperature, displaying promising low-temperature thermoelectric effect", J. Am. Chem. Soc., Vol. 133, No. 35, pp. 13798-13801, 2011. https://doi.org/10.1021/ja203186f
  21. D. Manno, A. Serra, M. Di Giulio, G. Micocci, A. Taurino, A. Tepore, and D. Berti, "Structural and electrical properties of sputtered vanadium oxide thin films for applications as gas sensing material", J. Appl. Phys., Vol. 81, No. 1, p. 2709, 1997. https://doi.org/10.1063/1.363973
  22. L. Wang and X. Li, "Preparation of $VO_2$ microbolometer for $CO_2$ gas detection", Proceddings of the 2010 International Conference on ICMMT, pp. 1774-1777, Chengdu, China, 2010.
  23. A. K. Prasada, S. Amirthapandiana, S. Dharaa, S. Dasha, N. Muralib, and A. K. Tyagia, "Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature", Sens. Actuator B-Chem., Vol. 191, pp. 252-256, 2014. https://doi.org/10.1016/j.snb.2013.09.102
  24. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, "Strain engineering and one-dimensional organization of metal-insulator domains in singlecrystal vanadium dioxide beams", Nature Nanotechnol., Vol. 4, No. 1, pp.732-737, 2009. https://doi.org/10.1038/nnano.2009.266
  25. Y. Muraoka and Z. Hiroi, "Metal-insulator transition of $VO_2$ thin films grown on $TiO_2$(001) and (110) substrates", J. Appl. Phys., Vol. 80, No. 1, p. 583 , 2002.
  26. K. Okazak, H. Wadati, A. Fujimori, M. Onoda, Y. Muraoka, and Z. Hiroi, "Photoemission study of the metal-insulator transition in $VO_2$/TiO (001): Evidence for strong electron-electron and electron-phonon interaction", Phys. Rev. B, Vol. 69, No. 1, p.165104, 2004. https://doi.org/10.1103/PhysRevB.69.165104
  27. B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V. V. Tsukruk, and Z. L. Wang, "External-strain induced insulating phase transition in $VO_2$ nanobeam and its application as flexible strain sensor", Adv. Mater., Vol. 22, No. 25, pp. 5134-5139, 2010. https://doi.org/10.1002/adma.201002868
  28. B. Hu, Y. Zhang, W. Chen, C. Xu, and Z. L. Wang, "Self-heating and external strain coupling induced phase transition of $VO_2$ nanobeam as single domain switch", Adv. Mater., Vol. 23, No. 31, pp. 3536-3541, 2011. https://doi.org/10.1002/adma.201101731
  29. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Kang, and Y. Lim, "Mechanism and observation of Mott transition in $VO_2$-based two- and three-terminal devices," N. J. Phys., Vol. 6, No. 1, pp. 52-70, 2004. https://doi.org/10.1088/1367-2630/6/1/052
  30. H. T. Kim, Y. W. Lee, B. Kim, B. Chae, S. J. Yun, K. Kang, K. Han, K. Yee, and Y. Lim "Monoclinic and correlated metal phase in $VO_2$ as evidence of the mott transition: Coherent phonon analysis", Phys. Rev. Lett., Vol. 97, No. 1, p. 266401, 2006. https://doi.org/10.1103/PhysRevLett.97.266401
  31. B. G. Chae, H. T. Kim, and S. J. Yun, "Characteristics of W- and Ti-doped $VO_2$ thin films prepared by sol-gel method", Electrochem. Solid-State Lett., Vol. 11, No. 6, pp. D53-D55, 2008. https://doi.org/10.1149/1.2903208
  32. T. Yao, X. Zhang, Z. Sun, S. Liu, Y. Huang, Y. Xie, C. Wu, X. Yuan, W. Zhang, Z. Wu, G. Pan, F. Hu, L. Wu, Q. Liu, and S. Wei, "Understanding the nature of the kinetic process in a $VO_2$ metal-insulator transition", Phys. Rev. Lett., Vol. 105, No. 1, p. 226405, 2010. https://doi.org/10.1103/PhysRevLett.105.226405
  33. X. Tan, Tao Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, Y. Xie, and S. Wei, "Unraveling metal-insulator transition mechanism of $VO_2$ triggered by tungsten doping", Scientific Reports, Vol. 2, No. 466, p. 465, 2012. https://doi.org/10.1038/srep00465