Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.10.006

Non-stoichiometry-induced metal-to-insulator transition in nickelate thin films grown by pulsed laser deposition  

Lee, Jongmin (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Choi, Kyoung Soon (The Advanced Nano Surface Research Group, Korea Basic Science Institute)
Lee, Tae Kwon (Department of Physics, Inha University)
Jeong, Il-Seok (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Kim, Sangmo (Department of Electrical Engineering, Gachon University)
Song, Jaesun (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Bark, Chung Wung (Department of Electrical Engineering, Gachon University)
Lee, Joo-Hyoung (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Jung, Jong Hoon (Department of Physics, Inha University)
Lee, Jouhahn (The Advanced Nano Surface Research Group, Korea Basic Science Institute)
Kim, Tae Heon (Department of Physics, University of Ulsan)
Lee, Sanghan (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
Abstract
While controlling the cation contents in perovskite rare-earth nickelate thin films, a metal-to-insulator phase transition is reported. Systematic control of cation stoichiometry has been achieved by manipulating the irradiation of excimer laser in pulsed laser deposition. Two rare-earth nickelate bilayer thin-film heterostructures with the controlled cation stoichiometry (i.e. stoichiometric and Ni-excessive) have been fabricated. It is found that the Ni-excessive nickelate film is structurally less dense than the stoichiometric film, albeit both of them are epitaxial and coherent with respect to the underlying substrate. More interestingly, as a temperature decreases, a metal-to-insulator transition is only observed in the Ni-excessive nickelate films, which can be associated with the enhanced disproportionation of the Ni charge valence. Based on our theoretical results, possible origins (e.g. anti-site defects) of the low-temperature insulating state are discussed with the need of future work for deeper understanding. Our work can be utilized to realize unusual physical phenomena (e.g. metal-to-insulator phase transitions) in complex oxide films by manipulating the chemical stoichiometry in pulsed laser deposition.
Keywords
Metal-to-insulator transition; Thin film; Nickelate; Pulsed laser deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R.D. Sanchez, M.T. Causa, A. Caneiro, A. Butera, M. Vallet-Regi, M.J. Sayagues, J. Gonzalez-Calbet, F. García-Sanz, J. Rivas, Phys. Rev. B 54 (1996) 16574.   DOI
2 Y. Tokura, N. Nagaosa, Science 288 (2000) 462.   DOI
3 T. Sakudo, H. Unoki, Phys. Rev. Lett. 26 (1971) 851.   DOI
4 J.F. Schooley, W.R. Hosler, M.L. Cohen, Phys. Rev. Lett. 12 (1964) 474.   DOI
5 H.Y. Hwang, A. Ohtomo, N. Nakagawa, D.A. Muller, J.L. Grazul, Physica E 22 (2004) 712.   DOI
6 M. Zhu, P. Komissinskiy, A. Radetinac, M. Vafaee, Z. Wang, L. Alff, Appl. Phys. Lett. 103 (2013) 141902.   DOI
7 A. Tiwari, K.P. Rajeev, Solid State Commun. 109 (1998) 119.   DOI
8 J. Shi, Y. Zhou, S. Ramanathan, Nat. Commun. 5 (2014) 4860.   DOI
9 J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Phys. Rev. B 45 (1992) 8209.
10 J.A. Alonso, J.L. Garcia-Munoz, M.T. Fernandez-Diaz, M.A.G. Aranda, M.J. Martinez-Lope, M.T. Casais, Phys. Rev. Lett. 82 (1999) 3871.   DOI
11 I.V. Nikulin, M.A. Novojilov, A.R. Kaul, S.N. Mudretsova, S.V. Kondrashov, Mater. Res. Bull. 39 (2004) 775.   DOI
12 C.N.R. Rao, Annu. Rev. Phys. Chem. 40 (1989) 291.   DOI
13 D.I. Khomskii, Transition Metal Compounds, Cambridge University Press, Cambridge, 2014.
14 E. Breckenfeld, Z. Chen, A.R. Damodaran, L.W. Martin, ACS Appl. Mater. Interfaces 6 (2014) 22436.   DOI
15 E.J. Moon, B.A. Gray, A. Pimpinelli, M. Kareev, D. Meyers, J. Chakhalian, Cryst. Growth Des. 13 (2013) 2256.   DOI
16 A.J. Hauser, E. Mikheev, N.E. Moreno, J. Hwang, J.Y. Zhang, S. Stemmer, Appl. Phys. Lett. 106 (2015) 092104.   DOI
17 A.Y. Dobin, K.R. Nikolaev, I.N. Krivorotov, R.M. Wentzcovitch, E.D. Dahlberg, A.M. Goldman, Phys. Rev. B 68 (2003) 113408.   DOI
18 D.P. Kumah, A. Malashevich, A.S. Disa, D.A. Arena, F.J. Walker, S. Ismail-Beigi, C.H. Ahn, Phys. Rev. Appl. 2 (2014) 054004.   DOI
19 B. Dam, J.H. Rector, J. Johansson, J. Huijbregtse, D.G. De Groot, J. Appl. Phys. 83 (1998) 3386.   DOI
20 A. Li, C. Ge, P. Lu, N. Ming, Appl. Phys. Lett. 68 (1996) 1347.   DOI
21 D. Preziosi, A. Sander, A. Barthelemy, M. Bibes, AIP Adv. 7 (2017) 015210.   DOI
22 H.M. Christen, G. Eres, J. Phys. Condens. Matter 20 (2008) 264005.   DOI
23 V. Craciun, D. Craciun, M.C. Bunescu, R. Dabu, I.W. Boyd, J. Phys. D Appl. Phys. 32 (1999) 1306.   DOI
24 J. Son, P. Moetakef, J.M. LeBeau, D. Ouellette, L. Balents, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 96 (2010) 062114.   DOI
25 D.J. Groenendijk, N. Manca, G. Mattoni, L. Kootstra, S. Gariglio, Y. Huang, E. van Heumen, A.D. Caviglia, Appl. Phys. Lett. 109 (2016) 041906.   DOI
26 S.Y. Jang, S.J. Moon, B.C. Jeon, J.-S. Chung, J. Kor. Phys. Soc. 56 (2010) 1814.   DOI
27 S. Mickevicius, S. Grebinskij, V. Bondarenka, B. Vengalis, K. Sliuziene, B.A. Orlowski, V. Osinniy, W. Drube, J. Alloys Compd. 423 (2006) 107.   DOI
28 J.A. Alonso, A. Munoz, A. Largeteau, G. Demazeau, J. Phys. Condens. Matter 16 (2004) S1277.   DOI
29 A.B. Kunz, J. Phys. C Solid State Phys. 14 (1981) L455.   DOI
30 X. Fan, H. Liu, C. Fei, B. Zhong, X. Wang, Q. Wang, J. Electron. Mater. 44 (2015) 2592.   DOI
31 Y.-W. Chung, Introduction to Materials Science and Engineering, CRC Press, 2006.
32 C.R. Smith, A.C. Lang, V. Shutthanandan, M.L. Taheri, S.J. May, J. Vac. Sci. Technol. A 33 (2015) 041510.   DOI
33 W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D.H.A. Blank, M.R. Beasley, Phys. Rev. B 76 (2007) 075126.   DOI
34 R. Islam, G. Chen, P. Ramesh, J. Suh, N. Fuchigami, D. Lee, K.A. Littau, K. Weiner, R.T. Collins, K.C. Saraswat, ACS Appl. Mater. Interfaces 9 (2017) 17201.   DOI
35 L. Qiao, X. Bi, EPL Europhys. Lett. 93 (2011) 57002.   DOI
36 S. Heo, C. Oh, J. Son, H.M. Jang, Sci. Rep. 7 (2017) 4681.   DOI
37 R.D. Shannon, Acta Crystallogr. 32 (1976) 751.   DOI
38 K. Xiong, J. Robertson, Microelectron. Eng. 86 (2009) 1672.   DOI
39 R.A. Rao, Q. Gan, C.B. Eom, R.J. Cava, Y. Suzuki, J.J. Krajewski, S.C. Gausepohl, M. Lee, Appl. Phys. Lett. 70 (1997) 3035.   DOI
40 M. Gibert, M. Viret, A. Torres-Pardo, C. Piamonteze, P. Zubko, N. Jaouen, J.-M. Tonnerre, A. Mougin, J. Fowlie, S. Catalano, A. Gloter, O. Stephan, J.-M. Triscone, Nano Lett. 15 (2015) 7355.   DOI
41 M.L. Medarde, J. Phys. Condens. Matter 9 (1997) 1679.   DOI
42 J. Varignon, M.N. Grisolia, J. Iniguez, A. Barthelemy, M. Bibes, NPJ Quantum Mater. 2 (2017) 21.   DOI
43 V. Bisogni, S. Catalano, R.J. Green, M. Gibert, R. Scherwitzl, Y. Huang, V.N. Strocov, P. Zubko, S. Balandeh, J.-M. Triscone, G. Sawatzky, T. Schmitt, Nat. Commun. 7 (2016) 13017.   DOI