DOI QR코드

DOI QR Code

Non-stoichiometry-induced metal-to-insulator transition in nickelate thin films grown by pulsed laser deposition

  • Lee, Jongmin (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Choi, Kyoung Soon (The Advanced Nano Surface Research Group, Korea Basic Science Institute) ;
  • Lee, Tae Kwon (Department of Physics, Inha University) ;
  • Jeong, Il-Seok (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Sangmo (Department of Electrical Engineering, Gachon University) ;
  • Song, Jaesun (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Bark, Chung Wung (Department of Electrical Engineering, Gachon University) ;
  • Lee, Joo-Hyoung (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jung, Jong Hoon (Department of Physics, Inha University) ;
  • Lee, Jouhahn (The Advanced Nano Surface Research Group, Korea Basic Science Institute) ;
  • Kim, Tae Heon (Department of Physics, University of Ulsan) ;
  • Lee, Sanghan (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • Received : 2018.08.02
  • Accepted : 2018.10.12
  • Published : 2018.12.31

Abstract

While controlling the cation contents in perovskite rare-earth nickelate thin films, a metal-to-insulator phase transition is reported. Systematic control of cation stoichiometry has been achieved by manipulating the irradiation of excimer laser in pulsed laser deposition. Two rare-earth nickelate bilayer thin-film heterostructures with the controlled cation stoichiometry (i.e. stoichiometric and Ni-excessive) have been fabricated. It is found that the Ni-excessive nickelate film is structurally less dense than the stoichiometric film, albeit both of them are epitaxial and coherent with respect to the underlying substrate. More interestingly, as a temperature decreases, a metal-to-insulator transition is only observed in the Ni-excessive nickelate films, which can be associated with the enhanced disproportionation of the Ni charge valence. Based on our theoretical results, possible origins (e.g. anti-site defects) of the low-temperature insulating state are discussed with the need of future work for deeper understanding. Our work can be utilized to realize unusual physical phenomena (e.g. metal-to-insulator phase transitions) in complex oxide films by manipulating the chemical stoichiometry in pulsed laser deposition.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. C.N.R. Rao, Annu. Rev. Phys. Chem. 40 (1989) 291. https://doi.org/10.1146/annurev.pc.40.100189.001451
  2. D.I. Khomskii, Transition Metal Compounds, Cambridge University Press, Cambridge, 2014.
  3. R.D. Sanchez, M.T. Causa, A. Caneiro, A. Butera, M. Vallet-Regi, M.J. Sayagues, J. Gonzalez-Calbet, F. García-Sanz, J. Rivas, Phys. Rev. B 54 (1996) 16574. https://doi.org/10.1103/PhysRevB.54.16574
  4. Y. Tokura, N. Nagaosa, Science 288 (2000) 462. https://doi.org/10.1126/science.288.5465.462
  5. T. Sakudo, H. Unoki, Phys. Rev. Lett. 26 (1971) 851. https://doi.org/10.1103/PhysRevLett.26.851
  6. J.F. Schooley, W.R. Hosler, M.L. Cohen, Phys. Rev. Lett. 12 (1964) 474. https://doi.org/10.1103/PhysRevLett.12.474
  7. H.Y. Hwang, A. Ohtomo, N. Nakagawa, D.A. Muller, J.L. Grazul, Physica E 22 (2004) 712. https://doi.org/10.1016/j.physe.2003.12.106
  8. M. Zhu, P. Komissinskiy, A. Radetinac, M. Vafaee, Z. Wang, L. Alff, Appl. Phys. Lett. 103 (2013) 141902. https://doi.org/10.1063/1.4823697
  9. A. Tiwari, K.P. Rajeev, Solid State Commun. 109 (1998) 119. https://doi.org/10.1016/S0038-1098(98)00515-8
  10. J. Shi, Y. Zhou, S. Ramanathan, Nat. Commun. 5 (2014) 4860. https://doi.org/10.1038/ncomms5860
  11. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Phys. Rev. B 45 (1992) 8209.
  12. J.A. Alonso, J.L. Garcia-Munoz, M.T. Fernandez-Diaz, M.A.G. Aranda, M.J. Martinez-Lope, M.T. Casais, Phys. Rev. Lett. 82 (1999) 3871. https://doi.org/10.1103/PhysRevLett.82.3871
  13. I.V. Nikulin, M.A. Novojilov, A.R. Kaul, S.N. Mudretsova, S.V. Kondrashov, Mater. Res. Bull. 39 (2004) 775. https://doi.org/10.1016/j.materresbull.2004.02.005
  14. E. Breckenfeld, Z. Chen, A.R. Damodaran, L.W. Martin, ACS Appl. Mater. Interfaces 6 (2014) 22436. https://doi.org/10.1021/am506436s
  15. E.J. Moon, B.A. Gray, A. Pimpinelli, M. Kareev, D. Meyers, J. Chakhalian, Cryst. Growth Des. 13 (2013) 2256. https://doi.org/10.1021/cg300958z
  16. J. Son, P. Moetakef, J.M. LeBeau, D. Ouellette, L. Balents, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 96 (2010) 062114. https://doi.org/10.1063/1.3309713
  17. A.J. Hauser, E. Mikheev, N.E. Moreno, J. Hwang, J.Y. Zhang, S. Stemmer, Appl. Phys. Lett. 106 (2015) 092104. https://doi.org/10.1063/1.4914002
  18. A.Y. Dobin, K.R. Nikolaev, I.N. Krivorotov, R.M. Wentzcovitch, E.D. Dahlberg, A.M. Goldman, Phys. Rev. B 68 (2003) 113408. https://doi.org/10.1103/PhysRevB.68.113408
  19. D.P. Kumah, A. Malashevich, A.S. Disa, D.A. Arena, F.J. Walker, S. Ismail-Beigi, C.H. Ahn, Phys. Rev. Appl. 2 (2014) 054004. https://doi.org/10.1103/PhysRevApplied.2.054004
  20. A. Li, C. Ge, P. Lu, N. Ming, Appl. Phys. Lett. 68 (1996) 1347. https://doi.org/10.1063/1.115930
  21. B. Dam, J.H. Rector, J. Johansson, J. Huijbregtse, D.G. De Groot, J. Appl. Phys. 83 (1998) 3386. https://doi.org/10.1063/1.367106
  22. D. Preziosi, A. Sander, A. Barthelemy, M. Bibes, AIP Adv. 7 (2017) 015210. https://doi.org/10.1063/1.4975307
  23. H.M. Christen, G. Eres, J. Phys. Condens. Matter 20 (2008) 264005. https://doi.org/10.1088/0953-8984/20/26/264005
  24. V. Craciun, D. Craciun, M.C. Bunescu, R. Dabu, I.W. Boyd, J. Phys. D Appl. Phys. 32 (1999) 1306. https://doi.org/10.1088/0022-3727/32/12/305
  25. D.J. Groenendijk, N. Manca, G. Mattoni, L. Kootstra, S. Gariglio, Y. Huang, E. van Heumen, A.D. Caviglia, Appl. Phys. Lett. 109 (2016) 041906. https://doi.org/10.1063/1.4960101
  26. S.Y. Jang, S.J. Moon, B.C. Jeon, J.-S. Chung, J. Kor. Phys. Soc. 56 (2010) 1814. https://doi.org/10.3938/jkps.56.1814
  27. S. Mickevicius, S. Grebinskij, V. Bondarenka, B. Vengalis, K. Sliuziene, B.A. Orlowski, V. Osinniy, W. Drube, J. Alloys Compd. 423 (2006) 107. https://doi.org/10.1016/j.jallcom.2005.12.038
  28. J.A. Alonso, A. Munoz, A. Largeteau, G. Demazeau, J. Phys. Condens. Matter 16 (2004) S1277. https://doi.org/10.1088/0953-8984/16/14/040
  29. A.B. Kunz, J. Phys. C Solid State Phys. 14 (1981) L455. https://doi.org/10.1088/0022-3719/14/16/001
  30. K. Xiong, J. Robertson, Microelectron. Eng. 86 (2009) 1672. https://doi.org/10.1016/j.mee.2009.03.016
  31. X. Fan, H. Liu, C. Fei, B. Zhong, X. Wang, Q. Wang, J. Electron. Mater. 44 (2015) 2592. https://doi.org/10.1007/s11664-015-3673-0
  32. Y.-W. Chung, Introduction to Materials Science and Engineering, CRC Press, 2006.
  33. W. Siemons, G. Koster, A. Vailionis, H. Yamamoto, D.H.A. Blank, M.R. Beasley, Phys. Rev. B 76 (2007) 075126. https://doi.org/10.1103/PhysRevB.76.075126
  34. R. Islam, G. Chen, P. Ramesh, J. Suh, N. Fuchigami, D. Lee, K.A. Littau, K. Weiner, R.T. Collins, K.C. Saraswat, ACS Appl. Mater. Interfaces 9 (2017) 17201. https://doi.org/10.1021/acsami.7b01629
  35. L. Qiao, X. Bi, EPL Europhys. Lett. 93 (2011) 57002. https://doi.org/10.1209/0295-5075/93/57002
  36. C.R. Smith, A.C. Lang, V. Shutthanandan, M.L. Taheri, S.J. May, J. Vac. Sci. Technol. A 33 (2015) 041510. https://doi.org/10.1116/1.4922346
  37. S. Heo, C. Oh, J. Son, H.M. Jang, Sci. Rep. 7 (2017) 4681. https://doi.org/10.1038/s41598-017-04884-2
  38. R.D. Shannon, Acta Crystallogr. 32 (1976) 751. https://doi.org/10.1107/S0567739476001551
  39. R.A. Rao, Q. Gan, C.B. Eom, R.J. Cava, Y. Suzuki, J.J. Krajewski, S.C. Gausepohl, M. Lee, Appl. Phys. Lett. 70 (1997) 3035. https://doi.org/10.1063/1.118741
  40. M. Gibert, M. Viret, A. Torres-Pardo, C. Piamonteze, P. Zubko, N. Jaouen, J.-M. Tonnerre, A. Mougin, J. Fowlie, S. Catalano, A. Gloter, O. Stephan, J.-M. Triscone, Nano Lett. 15 (2015) 7355. https://doi.org/10.1021/acs.nanolett.5b02720
  41. M.L. Medarde, J. Phys. Condens. Matter 9 (1997) 1679. https://doi.org/10.1088/0953-8984/9/8/003
  42. J. Varignon, M.N. Grisolia, J. Iniguez, A. Barthelemy, M. Bibes, NPJ Quantum Mater. 2 (2017) 21. https://doi.org/10.1038/s41535-017-0024-9
  43. V. Bisogni, S. Catalano, R.J. Green, M. Gibert, R. Scherwitzl, Y. Huang, V.N. Strocov, P. Zubko, S. Balandeh, J.-M. Triscone, G. Sawatzky, T. Schmitt, Nat. Commun. 7 (2016) 13017. https://doi.org/10.1038/ncomms13017

Cited by

  1. Effect of Ceramic-Target Crystallinity on Metal-to-Insulator Transition of Epitaxial Rare-Earth Nickelate Films Grown by Pulsed Laser Deposition vol.1, pp.9, 2018, https://doi.org/10.1021/acsaelm.9b00453
  2. Template Engineering of Metal-to-Insulator Transitions in Epitaxial Bilayer Nickelate Thin Films vol.13, pp.45, 2018, https://doi.org/10.1021/acsami.1c13675