• 제목/요약/키워드: Transient Liquid Phase sintering

검색결과 25건 처리시간 0.024초

고온동작소자의 패키징을 위한 천이액상확산접합 기술 (Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation)

  • 정도현;노명환;이준형;김경흠;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, research and application for a power module have been actively studied according to the increasing demand for the production of vehicles, smartphones and semiconductor devices. The power modules based on the transient liquid phase (TLP) technology for bonding of power semiconductor devices have been introduced in this paper. The TLP bonding has been widely used in semiconductor packaging industry due to inhibiting conventional Pb-base solder by the regulation of end of life vehicle (ELV) and restriction of hazardous substances (RoHS). In TLP bonding, the melting temperature of a joint layer becomes higher than bonding temperature and it is cost-effective technology than conventional Ag sintering process. In this paper, a variety of TLP bonding technologies and their characteristics for bonding of power module have been described.

전력반도체 접합용 천이액상확산접합 기술 (Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging)

  • 이정현;정도현;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.

Fabrication of β-SiAlONs by a Reaction-Bonding Process Followed by Post-Sintering

  • Park, Young-Jo;Noh, Eun-Ah;Ko, Jae-Woong;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제46권5호
    • /
    • pp.452-455
    • /
    • 2009
  • A cost-effective route to synthesize $\beta$-SiAlONs from Si mixtures by reaction bonding followed by post-sintering was investigated. Three different z values, 0.45, 0.92 and 1.87, in $Si_{6-z}Al_zO_zN_{8-z}$ without excess liquid phase were selected to elucidate the mechanism of SiAlON formation and densification. For RBSN (reaction-bonded silicon nitride) specimens prior to post-sintering, nitridation rates of more than 90% were achieved by multistep heating to $1400^{\circ}C$ in flowing 5%$H_2$/95%$N_2$; residual Si was not detected by XRD analysis. An increase in density was acquired with increasing z values in post-sintered specimens, and this tendency was explained by the presence of higher amounts of transient liquid phase at larger z values. Measured z values from the synthesized $\beta$-SiAlONs were similar to the values calculated for the starting compositions. Slight deviations in z values between measurements and calculations were rationalized by a reasonable application of the characteristics of the nitriding and post-sintering processes.

시알론을 첨가한 탄화규소 세라믹스의 제조 (Preparation of Silicon Carbide with Sialon)

  • 이종국;박종곤;이은구;김환
    • 한국세라믹학회지
    • /
    • 제37권3호
    • /
    • pp.247-255
    • /
    • 2000
  • Silicon carbide with sialon was prepared by hot pressing and transient liquid-phase sintering, and the effects of sintering atmosphere and starting phases on their microstructural characteristics were investigated. The sintered SiC with Sialon composition(Y2O3, AlN, Si3N4) in argon atmosphere had high sintered density and large aspect ratio. But sintered specimens in nitrogen atmosphere showed low aspect ratio and small grian size, becuase of the retardation of phase transformation and grain growth. Addition of Y-Sialon powder to SiC also retarded the phase transformation to ${\alpha}$-SiC from ${\beta}$-SiC and densification. The SiC specimen prepared from the starting ${\beta}$-SiC powder with Sialon composition(Y2O3, AlN, Si3N4) showed the highest fracture toughness about 6.0 MPa$.$m1/2.

  • PDF

주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합 (Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications)

  • 윤정원;정소은
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.71-79
    • /
    • 2021
  • 본 연구에서는 고온 대응 EV (Electric Vehicle) 전력반도체 칩 접합용 Sn-Ni 페이스트의 제조 및 특성 평가 연구가 수행되었다. Sn-Ni 페이스트의 Sn과 Ni 함량에 따른 TLPS (Transient Liquid Phase Sintering) 접합부 미세 조직 변화 관찰 결과, Sn-20Ni (in wt.%)의 경우에는 Ni 분말의 부족, 그리고 Sn-50Ni의 경우에는 Ni 분말의 과다 포함에 따른 Ni 뭉침 현상이 관찰되었다. Sn-30Ni과 Sn-40Ni의 경우에는 TLPS 접합 공정 후 상대적으로 치밀한 접합부 단면 미세 구조 조직을 가짐을 확인하였다. TLPS 접합 공정 후 접합부 시편의 DSC 열 분석 결과로부터 TLPS 접합 공정 반응 동안 Sn과 Ni의 충분한 반응이 일어남을 확인하였으며, 접합 공정 후 접합부에는 Sn이 남아 있지 않음을 확인하였다. 추가적으로 공정 온도 변화에 따른 Sn-30Ni TLPS 접합부의 계면반응 및 기계적 강도 시험이 수행되었다. TLPS 접합 공정 후 접합부는 Ni-Sn 금속간화합물과 반응하고 남은 Ni 분말들로 구성되었으며, 접합 온도가 증가함에 따라 접합부 칩 전단강도는 증가하였다. 솔더링 온도와 유사한 270 ℃의 접합 온도에서 30분 동안의 TLPS 접합 공정 수행 후 약 30 MPa의 높은 칩 전단 강도 값을 얻었다.

Milling 조건에 따른 BaTiO3의 저온 소결성 및 전기적 특성 변화 (Effect of Milling Condition on Low-temperature Sinterability and Electrical Properties of BaTiO3 Ceramics)

  • 홍민희;손성범;김영태;허강헌
    • 한국세라믹학회지
    • /
    • 제46권2호
    • /
    • pp.200-210
    • /
    • 2009
  • It is necessary to minimize the mismatch of sintering shrinkage between dielectric ceramic and Ni inner electrode layers for the purpose of developing the ultra high-capacity multi layered ceramic condenser(MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the influence of the milling condition on sintering behavior and electrical properties of $BaTiO_3$ ceramics was investigated in the $BaTiO_3$(BT)-Mg-Dy-Mn-Ba system with borosilicate glass as a sintering agent. As milling time increased, specific surface area(SSA) of the powder increased linearly, while both sinterability and dielectric property were found to be drastically decreased with an increasing SSA. It was also revealed that the sinterability of the excessively milled $BaTiO_3$ ceramics could be recovered by increasing Ba content, rather than increasing glass addition. These results suggest that the sintering behavior of $BaTiO_3$ ceramics under the high SSA was more strongly dependent on the transient liquid phase caused by Ba addition, than the liquid phase from additional glass.

내마모 철계 소결합금(Fe-5Cr-lMo-2Cu-0.5P-3C)에서 정합변형이 액상석출물의 모양에 미치는 영향 (The Effect of Elastic Anisotropy on the Shape of a Liquid Precipitate in a Wear-Resistant Fe-Base Alloy(Fe-5Cr- lMo-2Cu-0.5P-3C))

  • 신형상
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.60-65
    • /
    • 1994
  • When a commercial prealloyed Fe-powder(Fe-5Cr-lMo-2Cu-0.5P-3C) is liquid phase sintered at 116$0^{\circ}C$, liquid precipitates with various shapes form within solid grains during the initial stage of sintering. The shape of a liquid precipitate changes pith the increment of their size from sphere(with radius<0.3$\mu\textrm{m}$), a transient polyhedron with more than 7 faces(1~2 $\mu\textrm{m}$), cuboid(3~5 $\mu\textrm{m}$), and finally to sphere(>5 $\mu\textrm{m}$). The shapes of liquid precipitates closely resemble the growth shapes predicted on the basis of solid-liquid interfacial energy and the coherency strain energy with anisotropic elastic constants in the diffusion zone around the precipitates.

  • PDF

녹색발광 β-SiAlON:Eu 세라믹 플레이트 형광체의 치밀화 소결 (The High Density Sintering of Green-emitting β-SiAlON:Eu Ceramic Plate Phosphor)

  • 박영조;이성훈;장욱경;윤창번;윤철수
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.503-508
    • /
    • 2010
  • $Eu^{2+}$-doped $\beta$-SiAlONs ($Si_{6-z}Al_zO_zN_{8-z}:Eu_y$) are recognized as promising phosphor materials to build an white LED for lighting application due to its excellent absorption/emission efficiency in the long wave length region. In this research, the fabrication of $\beta$-SiAlON:Eu plate phosphor by sintering was investigated with fixed Eu content(y) and varied composition of the host lattice(z). The addition of the activator $Eu_2O_3$ lead to enhanced densification by forming the transient liquid phase. The refinement of a composition by the calculated lattice parameter indicated that the measured composition of the fabricated specimens is nearly same to that of designed one. The single phase $\beta$-SiAlON:Eu plate with relative density of 96.4% was achieved by addition of 2 wt% CaO, which implies the possibility of full densification by adjusting the processing variables.

파워모듈의 TLP 접합 및 와이어 본딩 (TLP and Wire Bonding for Power Module)

  • 강혜준;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.7-13
    • /
    • 2019
  • Power module is getting attention from electronic industries such as solar cell, battery and electric vehicles. Transient liquid phase (TLP) boding, sintering with Ag and Cu powders and wire bonding are applied to power module packaging. Sintering is a popular process but it has some disadvantages such as high cost, complex procedures and long bonding time. Meanwhile, TLP bonding has lower bonding temperature, cost effectiveness and less porosity. However, it also needs to improve ductility of the intermetallic compounds (IMCs) at the joint. Wire boding is also an important interconnection process between semiconductor chip and metal lead for direct bonded copper (DBC). In this study, TLP bonding using Sn-based solders and wire bonding process for power electronics packaging are described.

Establishments of Fabrication and Evaluation Methods for Innovative SiC Fiber Reinforced SiC Matrix Composites

  • Park, Joon-Soo;Kohyama, Akira;Hinoki, Tatsuya
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.21-24
    • /
    • 2006
  • Based on the improvement in reinforcing SiC fibers and the utilization of very fine nano-SiC powders, the well known liquid phase sintering (LPS) process was drastically improved to become a new process called the Nano Infiltration and Transient Eutectic Phase (NITE) Process. Laboratory scale NITE-SiC/SiC composites demonstrated excellent mechanical properties, thermal conductivity, hermeticity and microstructure stability which made them attractive for not only energy application but many other industrial applications. For the real deployments of these materials, mass production system and evaluation methods, together with the design code and safety assurance systems are essential. The current efforts to establish these bases were introduced.

  • PDF