DOI QR코드

DOI QR Code

주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications

  • 윤정원 (충북대학교 신소재공학과) ;
  • 정소은 (현대자동차 남양연구소 전력변환설계팀)
  • Yoon, Jeong-Won (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jeong, So-Eun (Electric Power Conversion Engineering Design Team, Automotive Research & Development Division, Hyundai Motor Group)
  • 투고 : 2021.05.10
  • 심사 : 2021.05.21
  • 발행 : 2021.06.30

초록

본 연구에서는 고온 대응 EV (Electric Vehicle) 전력반도체 칩 접합용 Sn-Ni 페이스트의 제조 및 특성 평가 연구가 수행되었다. Sn-Ni 페이스트의 Sn과 Ni 함량에 따른 TLPS (Transient Liquid Phase Sintering) 접합부 미세 조직 변화 관찰 결과, Sn-20Ni (in wt.%)의 경우에는 Ni 분말의 부족, 그리고 Sn-50Ni의 경우에는 Ni 분말의 과다 포함에 따른 Ni 뭉침 현상이 관찰되었다. Sn-30Ni과 Sn-40Ni의 경우에는 TLPS 접합 공정 후 상대적으로 치밀한 접합부 단면 미세 구조 조직을 가짐을 확인하였다. TLPS 접합 공정 후 접합부 시편의 DSC 열 분석 결과로부터 TLPS 접합 공정 반응 동안 Sn과 Ni의 충분한 반응이 일어남을 확인하였으며, 접합 공정 후 접합부에는 Sn이 남아 있지 않음을 확인하였다. 추가적으로 공정 온도 변화에 따른 Sn-30Ni TLPS 접합부의 계면반응 및 기계적 강도 시험이 수행되었다. TLPS 접합 공정 후 접합부는 Ni-Sn 금속간화합물과 반응하고 남은 Ni 분말들로 구성되었으며, 접합 온도가 증가함에 따라 접합부 칩 전단강도는 증가하였다. 솔더링 온도와 유사한 270 ℃의 접합 온도에서 30분 동안의 TLPS 접합 공정 수행 후 약 30 MPa의 높은 칩 전단 강도 값을 얻었다.

In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.

키워드

과제정보

이 논문은 충북대학교 국립대학육성사업(2020)지원을 받아 작성되었습니다.

참고문헌

  1. J. W. Yoon, J. H. Bang, Y. H. Ko, S. H. Yoo, J. K. Kim and C. W. Lee, "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications", J. Microelectron. Packag. Soc., 21(4), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  2. A. Matallana, E. Ibarra, I. Lopez, J. Andreu, J. I. Garate, X. Jorda and J. Rebollo, "Power module electronics in HEV/EV applications: New trends in wide- bandgap semiconductor technologies and design aspects", Renew. Sust. Energ. Rev., 113, 109264 (2019). https://doi.org/10.1016/j.rser.2019.109264
  3. C. Durand, M. Klingler, M. Bigerelle and D. Coutellier, "Solder fatigue failures in a new designed power module under power cycling", Microelectron. Reliab., 66, 122 (2016). https://doi.org/10.1016/j.microrel.2016.10.002
  4. U. M. Choi, F. Blaabjerg, S. Jorgensen, F. Iannuzzo, H. Wang, C. Uhrenfeldt and S. Munk-Nielsen, "Power cycling test and failure analysis of molded intelligent power IGBT module under different temperature swing durations", Microelectron. Reliab., 64, 403 (2016). https://doi.org/10.1016/j.microrel.2016.07.020
  5. L. Nistor, A. Mihaila, M. Rahimo, L. Storasta and C. Corvasce, "Wide Bandgap Power Devices in Megawatt Applications", Power Electronics Europe, 4, 35 (2012).
  6. F. Lang, H. Yamaguchi, H. Nakagawa and H. Sato, "Thermally Stable Bonding of SiC Devices with Ceramic Substrates: Transient Liquid Phase Sintering Using Cu/Sn Powders", J. Electrochem. Soc. 160, 315 (2013).
  7. B. S. Lee, Y. H. Ko, J. H. Bang, C. W. Lee, S. Yoo, J. K. Kim and J. W. Yoon, "Interfacial reactions and mechanical strength of Sn-3.0Ag-0.5Cu/Ni/Cu and Au-20Sn/Ni/Cu solder joints for power electronics applications", Microelectron. Reliab., 71, 119 (2017). https://doi.org/10.1016/j.microrel.2017.03.011
  8. S. W. Yoon, M. D. Glover and K. Shiozaki, "Nickel-Tin Transient Liquid Phase Bonding Toward High-Temperature Operational Power Electronics in Electrified Vehicles", IEEE Trans. Power Electron., 28, 2448 (2013). https://doi.org/10.1109/TPEL.2012.2212211
  9. B. S. Lee and J. W. Yoon, "Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications", J. Electron. Mater., 47, 430 (2018). https://doi.org/10.1007/s11664-017-5792-2
  10. K. S. Siow, "Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?", J. Electron. Mater., 43, 947 (2014). https://doi.org/10.1007/s11664-013-2967-3
  11. J. W. Yoon, S. Bae, B. S. Lee and S. B. Jung, "Bonding of power device to ceramic substrate using Sn-coated Cu micro paste for high-temperature applications", Appl. Surf. Sci., 515, 146060 (2020). https://doi.org/10.1016/j.apsusc.2020.146060
  12. J. W. Yoon and J. H. Back, "Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for HighPower Applications", Materials, 11, 2105 (2018). https://doi.org/10.3390/ma11112105
  13. M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi and T. Suga, "Transient liquid-phase sintering using silver and tin powder mixture for die bonding", Jpn. J. Appl. Phys., 55, 04EC14 (2016). https://doi.org/10.7567/JJAP.55.04EC14
  14. J. W. Yoon, Y. S. Kim and S. E. Jeong, "Nickel-tin transient liquid phase sintering with high bonding strength for high-temperature power applications", J. Mater. Sci.-Mater. Electron., 30, 20205 (2019). https://doi.org/10.1007/s10854-019-02404-8
  15. S. E. Jeong, S. B. Jung and J. W. Yoon, "Fast formation of Ni-Sn intermetallic joints using Ni-Sn paste for high-temperature bonding applications", J. Mater. Sci.-Mater. Electron., 31, 15048 (2020). https://doi.org/10.1007/s10854-020-04068-1
  16. H. Kang and J. Jung, "TLP and Wire Bonding for Power Module", J. Microelectron. Packag. Soc., 26(4), 7 (2019).
  17. J. F. Li, P. A. Agyakwa and C. M. Johnson, "Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process", Acta Mater., 59, 1198 (2011). https://doi.org/10.1016/j.actamat.2010.10.053

피인용 문헌

  1. A Study of Transient Liquid Phase Bonding Using an Ag-Sn3.0Ag0.5Cu Hybrid Solder Paste vol.39, pp.4, 2021, https://doi.org/10.5781/jwj.2021.39.4.5