• Title/Summary/Keyword: Transgenic plants

Search Result 819, Processing Time 0.027 seconds

Callus Induction and Plant Regeneration from Mature Seeds of Timothy (티모시 성숙종자로부터 캘러스 유도 및 식물체 재분화)

  • Lee, Ki-Won;Kim, Ki-Yong;Choi, Gi-Jun;Lim, Young-Chul;Kim, Won-Ho;Jung, Min-Wong;Seo, Sung;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.165-170
    • /
    • 2008
  • Timothy (Phleum pratense L.) is an important grass species as forage. In order to optimize tissue culture conditions of timothy, the effects of plant growth regulators on callus induction and plant regeneration was investigated with mature seeds of colt cultivar. The optimal concentration of 2,4-D for the induction of primary callus from mature seeds was 3 mg/L. The highest embryogenic callus frequenc (25%) was observed when the mature seed were cultured on MS medium supplemented with 3 mg/L 2,4-D and 0.1 mg/L BA. The highest plant regeneration frequency was observed when type B callus was transferred to N6 medium supplemented with 1 mg/L 2,4-D and 3 mg/L BA. Regenerated plants were grown normally when shoots were transplanted to the soil. A short tissue culture period and regeneration system would be beneficial for molecular breeding of timothy by the production of transgenic plant.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Development of glufosinate-tolerant GMO detection markers for food safety management (식품안전관리를 위한 제초제 glufosinate 특이적 GM 작물 검출마커 개발)

  • Song, Minji;Qin, Yang;Cho, Younsung;Park, TaeSung;Lim, Myung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • Over 500 genetically modified organisms (GMOs) have been developed since 1996, of which nearly 44% have glufosinate herbicide-tolerant traits. Identification of specific markers that can be used to identify herbicide-tolerant traits is challenging as the DNA sequences of the gene(s) of a trait are highly variable depending on the origin of the gene(s), plant species, and developers. To develop specific PCR marker(s) for the detection of the glufosinate-tolerance trait, DNA sequences of several pat or bar genes were compared and a diverse combination of PCR primer sets were examined using certified reference materials or transgenic plants. Based on both the qualitative and quantitative PCR tests, a primer set specific for pat and non-specific for bar was developed. Additionally, a set of markers that can detect both pat and bar was developed, and the quantitative PCR data indicated that the primer pairs were sensitive enough to detect 0.1% of the mixed seed content rate.

Rapid Agrobacterium-mediated genetic rice transformation method using liquid media (액체배양을 이용한 단기 벼 형질전환 방법)

  • Yang, Dae-Hwa;Chang, Ahn-Cheol;Ahn, Il-Pyung;Kim, Hae-Jung;Kim, Dong-Hern;Lee, Hyo-Yeon;Suh, Seok Cheol
    • Journal of Plant Biotechnology
    • /
    • v.40 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Rice is one of the most important cereal crops as a model plant for functional genomics of monocotyledons and usually transformed using Agrobacterium tumefaciens. However, the transformation's process using previous method is still time consuming and uneconomical, low efficiency. In this study, we established a new method by modifying the general Agrobacterium protocol especially in the infection and co-cultivation, Agrobacterium elimination, infected calli's selection steps using liquid media. We directly inoculated Agrobacterium containing a ZjLsL gene under the control of constitutive promoter into the 1- to 3-week-old rice calli derived from mature seeds. After 3 days of co-cultivation, the infected calli were transferred onto liquid media of Agrobacterium elimination and calli's selection for 3 days. The calli were transferred to calli's growth solid media for 14 days and then the calli transferred to shoot induction and root induction media. Putative transformants were initially selected on the medium containing phosphinothricin, and the PAT protein verified by PAT strip test. This method in this study would lead to reduction of substantial labor and time to generate transgenic plants.

Overexpression of Farnesyl Diphosphate Synthase by Introducing CaFPS Gene in Panax ginseng C. A. Mey. (인삼에서 Farnesyl Diphosphate Synthase 과발현이 진세노사이드 생합성에 미치는 영향)

  • Park, Hong Woo;Kim, Ok Tae;Hyun, Dong Yun;Kim, Yong Bum;Kim, Jang Uk;Kim, Young Chang;Bang, Kyong Hwan;Cha, Seon Woo;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2013
  • FPS (farnesyl diphosphate synthase) plays an essential role in organ development in plants. However, FPS has not previously been identified as a key regulatory enzyme in triterpene biosynthesis. In order to investigate the effect of FPS on ginsenosides biosynthesis, we over-expressed FPS of Centella asiatica (CaFPS) in Panax giseng adventitious roots. PCR analysis showed the integrations of the CaFPS and hygromycin phosphotransferase genes and we ultimately selected three lines. The result of Southern blot analysis demonstrated the introduction of the CaFPS gene into genome of ginseng. In addition, the results of RT-PCR analysis revealed that CaFPS gene overexpression induced an accumulation of its transcription in the ginseng adventitious roots. To determine whether or not the overexpression of the CaFPS gene contributes to the downstream gene expression associated with triterpene biosynthesis, the level of mRNAs was analyzed by real-time PCR. The result showed that no differences were detected in any expression of all genes. To determine quantitatively the content of ginsenosides in transgenic ginseng adventitious roots, HPLC analysis was conducted. The content of total 7 ginsenosides was increased to 1.8, 1.4, and 1.7 times than that of the controls, respectively. This indicated that the overexpression of CaFPS in ginseng adventitious roots causes an increase in ginsenoside content, although down stream genes of FPS gene were suppressed by CaFPS overexpression.

Increase of isoflavones in soybean callus by Agrobacterium-mediated transformation

  • Jiang, Nan;Jeon, Eun-Hee;Pak, Jung-Hun;Ha, Tae-Joung;Baek, In-Youl;Jung, Woo-Suk;Lee, Jai-Heon;Kim, Doh-Hoon;Choi, Hong-Kyu;Cui, Zheng;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.253-260
    • /
    • 2010
  • Plant secondary metabolites have always been a focus of study due to their important roles in human medicine and nutrition. We transferred the isoflavone synthase (IFS) gene into soybean [Glycine max (L.) Merr.] using the Agrobacterium-mediated transformation method in an attempt to produce transformed soybean plants which produced increased levels of the secondary metabolite, isoflavone. Although the trial to produce transgenic plant failed due to unestablished hygromycin selection, transformed callus cell lines were obtained. The induction rate and degree of callus were similar among the three cultivars tested, but light illumination positively influenced the frequency of callus formation, resulting in a callus induction rate of 74% for Kwangan, 67% for Sojin, and 73% for Duyou. Following seven to eight subcultures on selection media, the isoflavone content of the transformed callus lines were analyzed by high-performance liquid chromatography. The total amount of isoflavone in the transformed callus cell lines was three- to sixfold higher than that in control callus or seeds. Given the many positive effects of isoflavone on human health, it may be possible to adapt our transformed callus lines for industrialization through an alternative cell culture system to produce high concentrations of isoflavones.

Action mechanism of upstream open reading frame from S-adenosylmethionine decarboxylase gene as a in vivo translational inhibitor (S-Adenosylmethionine decarboxylase 유전자의 upstream open reading frame이 in vivo에서 translational inhibitor 로서의 작용 기작)

  • Choi, Yu-Jin;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 2011
  • S-Adenosylmethionine decarboxylase (SAMDC; EC 4.1.4.50), a key enzyme for polyamines biosynthesis, was tightly regulated for homeostatic levels. Carnation SAMDC gene (CSDC9) has an small upstream open reading frame (uORF) of 54 amino acids in 5'-leader sequence. To explore the functional mechanism of uORFs in controlling translation, we used a GUS reporter gene driven with the 35S promoter and uORF region of SAMDC gene for making transgenic tobacco plants. In our experiment, there were a translational inhibition of its downstream GUS ORF by SAMDC uORF sequence or SAMDC uORF protein. Expecially, translational inhibition was most effective in point-mutated construct, in which the start codon was changed. Therefore, this results suggested the ribosomal stalling might be involved in this translational inhibitory process. The frame shift in amino acid sequence of SAMDC uORF with start codon and stop codon resulted in a moderate increasing in GUS activity, suggesting the native amino acid sequence was important for a function as a translational inhibitor. Also, we showed that the production of GUS protein was significantly inhibited in the presence of the small uORF using histochemical analysis of GUS expression in seedlings and tobacco flowers. Importantly, the small uORF sequence induced a real peptide of 5.7 kDa, which was provided the presence of SAMDC uORF peptide band using an in vitro transcription/translation system. The peptide product of uORF might interact with other components of translational machinery as well as polyamines, which was resulted from that polyamine treatment was inhibited GUS protein band in SDS-PAGE experiment.

Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV

  • Pak, Jung-Hun;Chung, Eun-Sook;Shin, Sang-Hyun;Jeon, Eun-Hee;Kim, Mi-Jin;Lee, Hye-Young;Jeung, Ji-Ung;Hyung, Nam-In;Lee, Jai-Heon;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Oryza grandiglumis Chitinase IVa (OgChitIVa) cDNA encoding a class IV chitinase was cloned from wild rice (Oryza grandiglumis). OgChitIVa cDNA contains an open reading frame of 867 nucleotides encoding 288 amino acid residues with a predicted molecular weight of 30.4 kDa and isoelectric point of 8.48. Deduced amino acid sequences of OgChitIVa include the signal peptide and chitin-binding domain in the N-terminal domain and conserved catalytic domain. OgChitIVa showed significant similarity at the amino acid level with related monocotyledonous rice and maize chitinase, but low similarity with dicotyledoneous chitinase. Southern blot analysis showed that OgChitIVa genes are present as two copies in the wild rice genome. It was shown that RNA expression of OgChitIVa was induced by defense/stress signaling chemicals, such as jasmonic acid, salicylic acid, and ethephon or cantharidin and endothall or wounding, and yeast extract. It was demonstrated that overexpression of OgChitIVa in Arabidopsis resulted in mild resistance against the fungal pathogen, Botrytis cinerea, by lowering disease rate and necrosis size. RT-PCR analysis showed that PR-1 and PR-2 RNA expression was induced in the transgenic lines. Here, we suggest that a novel OgChitIVa gene may play a role in signal transduction process in defense response against B. cinerea in plants.

Effect of cultivar and ascorbic acid on in vitro shoot regeneration and development of bombardment-mediated plastid transformation of tomato (Lycopersicon esculentum) (토마토 재분화 효율 향상 및 엽록체 형질전환 조건)

  • Roh, Kyung-Hee;Lee, Ki-Jong;Park, Jong-Sug;Kim, Jong-Bum;Lee, Seung-Bum;Suh, Seok-Cheol
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.77-83
    • /
    • 2010
  • Eighteen cultivars of tomato were tested for their regeneration response. Lycopersicon esculentum cv. 2001-58 showed a very high frequency of regeneration (93%). We evaluated the effect of two compounds with known antioxidant activity (ascorbic acid and cystein). The use of ascorbic acid ($200\;-\;300\;{\mu}M/L$) has a positive effect on shoot regeneration. To develope a system for plastid transformation in tomato via homologous recombination, we constructed the tomato plastid expression vector (pKRT22-AG) harboring 2.2 kb flanking sequences cloned from intact plastid genome and gfp gene. To investigate the factors affecting the delivery system of the pKRT22-AG into chloroplast using bombardment, We assessed the optimal DNA concentration, gold particle volume and target distance. Expression of the GFP protein was observed within chloroplast on protoplast of cotyledon explant by confocal laser scanning microscopy, which indicates that the protocol developed in this study be useful for the production of plastid transgenic plants in tomato.

Effect of Surface Sterilization Method on Agrobacterium-mediated Transformation of Field-grown Zoysiagrass Stolon (포장생육 잔디 포복경을 이용한 잔디 형질전환에 있어서 살균방법의 영향)

  • Ahn, Na-Young;Alam, Iftekhar;Kim, Yong-Goo;Bae, Eun-Ji;Lee, Kwang-Soo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • Zoysiagrass (Zoysia japonica Steud.) is an important forage and turfgrass that spreads by stolons and rhizomes. Zoysiagrass stolon can be used directly for Agrobacterium-mediated genetic transformation by exploiting the potential of direct shoot formation. However, surface sterilization of field-grown stolons is difficult and remains to be explored. We developed an effective surface sterilization and culture method using the stolon explant for infection with Agrobacterium tumefaciens. Among various treatments, sequential disinfection in 30% bleach for 15 min followed by 0.1% mercuric chloride for 25 min resulted in the highest number of clean stolons. The efficacy of mercuric chloride was increased under vacuum conditions by incubating at 800 mbar for 5 min. The inclusion of 2.5 mg/l amphotericin B further prevents fungal growth in in vitro cultures. This protocol would speed up the development of transgenic plants by utilizing field-grown stolon nodes.