• 제목/요약/키워드: Transformerless photovoltaic system

검색결과 17건 처리시간 0.03초

변압기 없는 태양광 발전용 인버터의 제작 및 성능 특성 (The design and performance characteristic of transformerless inverter for the photovoltaic system)

  • 안교상;임회천;김신섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1368-1370
    • /
    • 2003
  • In this paper, the design and performance characteristics of a 3 kW class transformerless photovoltaic inverter was introduced. The field test results of the photovoltaic power inverter showed that the excellence of power quality, the characteristic of starting waveform, the stability and reliability of operation.

  • PDF

A Modified Single-Phase Transformerless Z-Source Photovoltaic Grid-Connected Inverter

  • Liu, Hongpeng;Liu, Guihua;Ran, Yan;Wang, Gaolin;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1217-1226
    • /
    • 2015
  • In a grid-connected photovoltaic (PV) system, the traditional Z-source inverter uses a low frequency transformer to ensure galvanic isolation between the grid and the PV system. In order to combine the advantages of both Z-source inverters and transformerless PV inverters, this paper presents a modified single-phase transformerless Z-source PV grid-connected inverter and a corresponding PWM strategy to eliminate the ground leakage current. By utilizing two reversed-biased diodes, the path for the leakage current is blocked during the shoot-through state. Meanwhile, by turning off an additional switch, the PV array is decoupled from the grid during the freewheeling state. In this paper, the operation principle, PWM strategy and common-mode (CM) characteristic of the modified transformerless Z-source inverter are illustrated. Furthermore, the influence of the junction capacitances of the power switches is analyzed in detail. The total losses of the main electrical components are evaluated and compared. Finally, a theoretical analysis is presented and corroborated by experimental results from a 1-kW laboratory prototype.

무변압기형 태양광 시스템에서 누설전류를 제거하기 위한 3레벨 인버터의 단순 SVPWM (A Simplified SVPWM for Three Level Inverters to Eliminate Leakage Currents in Transformeless Photovoltaic Systems)

  • 아르살란 안살리;김희준
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.319-328
    • /
    • 2016
  • This paper proposes a simplified SVPWM for three level inverters in transformerless photovoltaic (PV) systems. With the proposed SVPWM the three level space vector (SV) diagram is divided into only six sectors as in conventional two level SV diagram in such a way that only seven SVs are used among all the available SVs of three level inverter. The main features of the proposed SVPWM are that it is simple to implement, less switching losses as compared to conventional SVPWM and most importantly it eliminates the leakage currents in transformerless PV systems. Detailed theoretical analysis of the proposed SVPWM are presented and verified by numerical simulations and experimental results.

변압기 없는 계통연계형 PV PCS에서의 MPPT 제어기법 비교 분석 (Comparison and analysis of the MPPT algorithms in transformerless grid-connected PV PCS)

  • 이경수;정영석;소정훈;유권종;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1471-1473
    • /
    • 2004
  • Maximum power point tracking(MPPT) is used in photovoltaic(PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and irradiation conditions. The object of this paper is to compare and analyze MPPT efficiency for different MPPT techniques by changing irradiance. Also, this paper introduces transformerless grid-connected inverter. Simple flow charts and characteristics of each MPPT algorithm are shown. The implementation of transformerless grid-connected inveter system was based on a digital signal processor(DSP). Simulation was carried out for each MPPT method.

  • PDF

무변압기형 3상 계통연계 PV PCS (Transformerless Three-Phase Line-connected Photovoltaic PCS)

  • 서현우;권정민;권봉환
    • 전력전자학회논문지
    • /
    • 제12권5호
    • /
    • pp.355-363
    • /
    • 2007
  • 본 논문에서는 무변압기형 3상 계통연계 PV PCS (photovoltaic power conditioning system)를 제안하였다. 태양전지의 국소 최대 전력점에서 발전하는 것을 방지하여 최대 전력점에서 발전을 하도록 개선한 P&O (perturb and observe) 방식의 MPPT (maximum power point tracking) 알고리즘을 제안하였다. 3상 전압형 인버터를 외부 직류 링크 전압제어기, 내부 전류제어기, 그리고 마이크로컨트롤러로 구현하기에 적합하도록 간단화한 공간벡터 변조법을 통해 제어하여 3상 계통연계 시 단위 역률을 실현하였다. 그리고 시스템의 안정성 향상과 역률 개선을 위해 직류 링크 전압을 더 빠르고 정확하게 제어하기 위한 알고리즘을 제안하였다. 모든 알고리즘과 제어기를 하나의 마이크로컨트롤러로 구현하고 제안된 알고리즘과 제어기의 우수성을 실험을 통해 검증하였다.

태양광 인버터 회로구조에 따른 누설전류 비교 (Comparison of Leakage Current in Various Photovoltaic Inverter Topologies)

  • 윤한종;조영훈;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.105-106
    • /
    • 2016
  • In low-power grid-connected photovoltaic(PV) system, Single-phase transformerless full-bridge inverter is commonly used. However in transformerless photovoltaic application, the ground parasitic capacitance created by grounding between PV panels and ground. This ground parasitic capacitance inject additional current into the inverter, these currents cause electromagnetic interference problem, safety problem and harmonics problem in PV applications. In order to eliminate the ground current, This paper propose various inverter topologies in PV applications. These proposed inverter topologies are verified through simulation using PSIM.

  • PDF

PV용 계통연계형 인버터의 새로운 Topology 고찰 (Inquiry of New Topology for Grid-connected Photovoltaic Inverter)

  • 정영석;유권종
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.248-251
    • /
    • 1999
  • Recently, according to developing industry and life style, power consumption have been increased year after year. Currently these much power demand from power consumer is weakening the allowable power reverse margin in summer. As on of the remedies about this problem, the small scale grid-connected photovoltaic system is considered for auxiliary power source. Generally, grid-connected inverter have a isolation transformer for electrical isolation from utility. This paper propose transformerless system topology an inquiry the validity using simulation.

  • PDF

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

Optimized Hybrid Modulation Strategy for AC Bypass Transformerless Single-Phase Photovoltaic Inverters

  • Deng, Shuhao;Sun, Yao;Yang, Jian;Zhu, Qi;Su, Mei
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2129-2138
    • /
    • 2016
  • The full-bridge inverter, widely used for single-phase photovoltaic grid-connected applications, presents a leakage current issue. Therefore, an AC bypass branch is introduced to overcome this challenge. Nevertheless, existing modulation strategies entail drawbacks that should be addressed. One is the zero-crossing distortion (ZCD) of the AC current caused by neglecting the AC filter inductor voltage. Another is that the system cannot deliver reactive power because the AC bypass branch switches at the power frequency. To address these problems, this work proposes an optimized hybrid modulation strategy. To reduce ZCD, the phase angle of the inverter output voltage reference is shifted, thereby compensating for the neglected leading angle. To generate the reactive power, the interval of the negative power output is calculated using the power factor. In addition, the freewheeling switch is kept on when power is flowing into the grid and commutates at a high frequency when power is fed back to the DC side. In this manner, the dead-time insertion in the high-frequency switching area is minimized. Finally, the performances of the proposed modulation strategy and traditional strategies are compared on a universal prototype inverter. Experimental results validate the theoretical analysis.