Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.5.1217

A Modified Single-Phase Transformerless Z-Source Photovoltaic Grid-Connected Inverter  

Liu, Hongpeng (Department of Electrical Engineering, Harbin Institute of Technology)
Liu, Guihua (Department of Electrical Engineering, Harbin Institute of Technology)
Ran, Yan (Department of Electrical Engineering, Harbin Institute of Technology)
Wang, Gaolin (Department of Electrical Engineering, Harbin Institute of Technology)
Wang, Wei (Department of Electrical Engineering, Harbin Institute of Technology)
Xu, Dianguo (Department of Electrical Engineering, Harbin Institute of Technology)
Publication Information
Journal of Power Electronics / v.15, no.5, 2015 , pp. 1217-1226 More about this Journal
Abstract
In a grid-connected photovoltaic (PV) system, the traditional Z-source inverter uses a low frequency transformer to ensure galvanic isolation between the grid and the PV system. In order to combine the advantages of both Z-source inverters and transformerless PV inverters, this paper presents a modified single-phase transformerless Z-source PV grid-connected inverter and a corresponding PWM strategy to eliminate the ground leakage current. By utilizing two reversed-biased diodes, the path for the leakage current is blocked during the shoot-through state. Meanwhile, by turning off an additional switch, the PV array is decoupled from the grid during the freewheeling state. In this paper, the operation principle, PWM strategy and common-mode (CM) characteristic of the modified transformerless Z-source inverter are illustrated. Furthermore, the influence of the junction capacitances of the power switches is analyzed in detail. The total losses of the main electrical components are evaluated and compared. Finally, a theoretical analysis is presented and corroborated by experimental results from a 1-kW laboratory prototype.
Keywords
Common-mode voltage; Leakage current; Photovoltaic power system; Power loss; Pulse width modulation; Z-source inverter;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. F. Xiao, S. J. Xie, Y Chen, and R. H. Huang, “An optimized transformerless photovoltaic grid-connected inverter,” IEEE Trans. Ind Electron., Vol. 58, No. 5, pp. 1887-1895, May 2011.   DOI
2 B. J. Ji, J. H. Wang, and J. F. Zhao, “High-efficiency single-phase transformerless PV H6 inverter with hybrid modulation method,” IEEE Trans. Ind Electron., Vol. 60, No. 5, pp. 2104-2115, May 2013.   DOI
3 T. Kerekes, R. Teodorescu, P. Rodriguez, G. Vazquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology,” IEEE Trans. Ind Electron., Vol. 58, No. 1, pp. 184-191, Jan. 2011.   DOI
4 T. K. S. Freddy, N. A. Rahim, W. P. Hew, and H. S. Che, “Comparison and analysis of single-phase transformerless grid-connected PV inverters,” IEEE Trans. Power Electron., Vol. 29, No. 10, pp. 5358-5369, Oct. 2014.   DOI
5 Y. J. Gu, Y. Zhao, B. Yang, C. S. Li, and X. N. He, “Transformerless inverter with virtual DC bus concept for cost-effective grid-connected PV power systems,” IEEE Trans. Power Electron., Vol. 28, No. 10, pp. 793-805, Feb. 2013.   DOI
6 S. V. Araujo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,” IEEE Trans. Ind Electron., Vol. 57, No. 9, pp. 3118-3128, Sep. 2010.   DOI
7 Y. Wang, and R. Li, “Novel high-efficiency three-level stacked-neutral-point-clamped grid-tied inverter,” IEEE Trans. Ind Electron., Vol. 60, No. 9, pp. 3766-3774, Sep. 2013.   DOI
8 International Rectifier, IRGP4062D Datasheet, http://www.irf.com/product-info/datasheets/data/irgb4062dpbf.pdf, 2013.
9 B. Gu, J. Dominic, J. S, Lai, C. L Chen, T Labella, and B. F Chen, “High reliability and efficiency single-phase transformerless incverter for grid-connected photovoltaic systems,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2235-2245, May 2013.   DOI
10 S. H. Lee, K. T. Kim, J. M. K, and B. H. K, “Single-phase transformerless bi-directional inverter with high efficiency and low leakage current,” IET Power Electron., Vol. 7, No. 2, pp. 451-458, 2014.   DOI
11 B. Yang, W. H. Li, Y. J Gu, W. F. Cui, and X. N. He, “Improved transformerless inverter with commom-mode leakage current elimination for a photovoltaic grid-connected power system,” IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 752-762, Feb. 2012.   DOI
12 C. C. Hou, C.C. Shih, P. T. Cheng, and A. M. Hava, “Common-mode voltage reduction pulsewidth modulation techniques for three-phase grid-connected converters,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1971-1979, Apr. 2014.   DOI
13 H. F. Xiao, X. P. Liu, and K. Lan, “Zero-voltage-transition full-bridge topologies for transformerless photovoltaic grid-connected inverter,” IEEE Trans. Ind Electron., Vol. 61, No. 10, pp. 5393-5401, Oct. 2014.   DOI
14 S. Saridakis, E. Koutroulis, and F. Blaabjerg, “Optimal design of modern transformerless PV inverter topologies,” IEEE Trans. Energy Convers., Vol. 28, No. 2, pp. 394-404, Jun. 2013.   DOI
15 L. Zhang, K. Su, Y. Xing, and M. Xing, “H6 transformerless full-bridge PV grid-tied inverters,” IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1229-1238, Mar. 2014.   DOI
16 H. F. Xiao, X. P. Liu, and K. Lan, “Optimised full-bridge transformerless photovoltaic grid-connected inverter with low conduction loss and low leakage current,” IET Power Electron., Vol. 7, No. 4, pp. 1008-1015, Apr. 2014.   DOI
17 M. R. Islam, Y. G. Guo, and J. G. Zhu, “A multilevel medium-voltage inverter for step-up-transformer-less grid connection of photovoltaic power plants,” IEEE J. Photovoltaics, Vol. 4, No. 3, pp. 881-889, May 2014.   DOI
18 M. Amirabadi, A. Blakrishnan, H. A. Toliyat, and W. C. Alexander, “High-frequency AC-link PV inverter,” IEEE Trans. Ind Electron., Vol. 61, No. 1, pp. 281-291, Jan. 2014.   DOI
19 K. Deng, J. Y. Zheng, and J. Mei, “Novel switched-inductor quasi-Z-source inverter,” Journal of Power Electronics, Vol. 14, No. 1, pp. 11-21, Jan. 2013.   DOI
20 P. R. Prasanna, and A. K. Rathore, “Analysis, design, and experimental results of a novel soft-switching snubberless current-fed half-bridge front-end converter-based PV inverter,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3219-3230, Jul. 2014.   DOI
21 M.-K, Nguyen, Y.-C. Lim, Y.-H. Chang, and C.-J. Moon, “Embedded switched-inductor Z-source inverters,” Journal of Power Electronics, Vol. 13, No. 1, pp. 9-19, Jan. 2013.   DOI
22 Y. S. Liu, B. M. Ge, H. Abu-Rub, and F. Z. Peng, “Overview of space vector modulations for three-phase Z-source/quasi-Z-source inverters,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 2098-2108, Apr. 2014.   DOI
23 F. Bradaschia, M. C. Cavalcanti, P. E. P. Ferraz, F. A. S. Neves, E. C. dos santos, and J. H. G. M. da Silva, “Modulation for three-phase transformerless Z-source inverter to reduce leakage currents in photovoltaic systems,” IEEE Trans. Ind Electron., Vol. 58, No. 12, pp. 5385-5395, Dec. 2010.   DOI
24 O. Lopez, F. D. Freijedo, A. G. Yepes, P. fernandez-Comesaa, J. Malvar, R. Teodorescu, and J. Doval-Gansoy, “Eliminating ground current in a transformerless photovoltaic application,” IEEE Trans. Energy Convers., Vol. 25, No. 1, pp. 140-147, Mar. 2010.   DOI
25 A. Teke, and M. B. Latran, “Review of multifunctional inverter topologies and control schemes used in distributed generation systems,” Journal of Power Electronics, Vol. 14, No. 2, pp. 324-340, Mar. 2014.   DOI