• Title/Summary/Keyword: Transformed linear simulation

Search Result 53, Processing Time 0.029 seconds

Efficient computational method for joint distributions of heights and periods of nonlinear ocean waves

  • Wang, Yingguang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.597-605
    • /
    • 2019
  • This paper proposes a novel method for efficient prediction of joint distributions of heights and periods of nonlinear ocean waves. The proposed novel method utilizes a transformed linear simulation which is based on a Hermite transformation model where the transformation is chosen to be a monotonic cubic polynomial, calibrated such that the first four moments of the transformed model match the moments of the true process. This proposed novel method is utilized to predict the joint distributions of wave heights and periods of a sea state with the surface elevation data measured at the Gulfaks C platform in the North Sea, and the novel method's accuracy and efficiency are favorably validated by using comparisons with the results from an empirical joint distribution model, from a linear simulation model and from a second-order nonlinear simulation model.

Modeling of a Transfer Function for Frequency Controlled Resonant Inverters

  • Han, Mu-Ho;Lee, Chi-Hwan;Kwon, Woo-Hyun
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.567-574
    • /
    • 2009
  • A linear transfer function for the output current control of frequency-controlled resonant inverters is proposed in this paper. The circuit of resonant inverters can be transformed into two coupled circuits through the complex phasor transform. The circuits consist of cross-coupled power sources and passive elements. The circuits are used to induce the state space equation, which is transformed into the $4^{th}$ order cross-coupled transfer function. The $4^{th}$ order cross-coupled transfer function is modeled into a $2^{nd}$ order linear transfer function based on a behavior analysis of the pole and zero locations that facilitate a simple and intuitive linear transfer function. The feasibility and validity of the proposed linear transfer function were verified by simulation and experiment.

A Continuous Sliding Surface Transformed VSS by Saturation Function for MIMO Uncertain Linear Plants (다입출력 불확실 선형 플랜트를 위한 포화함수에 의한 연속 슬라이딩 면 변환 가변구조시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.127-134
    • /
    • 2015
  • In this note, a continuous sliding surface transformed variable structure systems by the saturation function is presented for MIMO uncertain linear plants. A discontinuous sliding surface transformed VSS is proposed theoretically. The closed loop exponential stability together with the MIMO existence condition of the sliding mode on the predetermined sliding surface is investigated. For practical applications, a continuous approximation of the discontinuous VSS is made by means of the saturation function. The discontinuity of the control input as the inherent property of the VSS is much improved in view of the practical aspects. Through a design example and simulation studies, the usefulness of the proposed continuous transformed VSS controller is verified.

Harmonic State Space Modeling of DC Microgrid Systems (직류 마이크로그리드 시스템의 고조파 상태 공간 모델링)

  • Kamalirad, Mohsen;To, Dinh Du;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.483-484
    • /
    • 2019
  • This paper proposes a harmonic state space (HSS) modeling of DC microgrid. In the HSS model, nonlinear equations for the switched circuit model are transformed into multiple linear equations. The simulation results have shown the HSS modeling is comparable with PSIM simulation.

  • PDF

Analysis on random vibration of a non-linear system in flying vehicle due to stochastic disturbances (불규칙 교란을 받는 비행체에 장착된 비선형 시스템의 난진동 해석)

  • 구제선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1426-1435
    • /
    • 1990
  • Dynamic behaviour of point tracking system mounted on flying vehicle shaking in a random manner is investigated and the system dynamic is represented by nonlinear stochastic equations. 2-D.O.F. nonlinear stochastic equations are successfully transformed to linear stochastic equations via equivalent linearization procedure in stochastic sense. Newly developed hybrid technique is used to obtain response statistics of the system under non-white random excitation, which is proved to be remarkably accurate one by performing stochastic simulation.

Numerical Simulation of Guided Ultrasonic Waves for Inspecting Epoxy Thickness in Aluminum-Epoxy-Aluminum Adhesive Plates (알루미늄-에폭시-알루미늄 접착판에서 에폭시 두께 검사를 위한 유도초음파 수치시뮬레이션)

  • Lee, Ju-Won;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.117-123
    • /
    • 2009
  • This paper presents a numerical simulation of guided ultrasonic waves propagating in aluminum-epoxy-aluminum adhesive plates. In particular, this study investigated the effect of the epoxy thickness on the dispersive patterns, such as the phase velocity and group velocity of guided ultrasonic waves. In addition to investigating the dispersive curves, a numerical simulation using the pulse-echo method was carried out. This simulation showed that the degree of sensitivity of the epoxy thickness is dependent on the curvature of the phase and group dispersion curves, the maximum amplitude of the received time signals, and the peak frequency of the real components of the Fourier transform. Then, the linear relations between the epoxy thickness and the received and transformed signals were constructed to estimate the epoxy thickness.

Dynamic and Linear Simulation for the Open Cycle Liquid Rocket Engine (개방형 액체로켓엔진의 동특성 전산모사)

  • Jung Young-Suk;Lee Han-Ju;Lim Seok-Hee;Cho Kie-Joo;Cho Gyu-Sik;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.239-242
    • /
    • 2004
  • In this paper, the general mathematical model of LRE(Liquid Rocket Engine) is presented. For the analysis about the trend of dynamics and the stability of open type LRE, it is transformed to linear model by Laplace transform and synthesized to the linear complex model of LRE with Matlab/Simulink.

  • PDF

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

Design of 6-DOF Attitude Controller of the UAV Simulator's Hovering Model

  • Keh, Joong-Eup;Lee, Mal-Young;Kim, Byeong-Il;Chang, Yu-Shin;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.969-974
    • /
    • 2004
  • For a maneuvering unmanned autonomous helicopter, it is necessary to design a proper controller of each flight mode. In this paper, overall helicopter dynamics is derived and hovering model is linearized and transformed into a state equation form. However, since it is difficult to obtain parameters of stability derivatives in the state equation directly, a linear control model is derived by time-domain parametric system identification method with real flight data of the model helicopter. Then, two different controllers - a linear feedback controller with proportional gains and a robust controller - are designed and their performance is compared. Both proposed controllers show outstanding results by computer simulation. These validated controllers can be used to autonomous flight controller of a real unmanned model helicopter.

  • PDF