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1. INTRODUCTION 

Recently, the core of aerospace industries is moving to 

UAV(Unmanned Aerial Vehicle), which is better than manned 

aircraft in some respects such as flight stability for highly 

dangerous works, physical limits caused by long-time flight or 

sudden maneuver, enormous time and expenditure cost for 

pilot training. System design problem is very important since 

UAV system plays its role as a testbed which fundamental 

researches such as controller design and system identification 

can be carried out and evaluated. UAV system design problem 

itself consists of many study fields, system identification, 

feedback control system, design and manufacture of sensors, 

signal processing, real-time control software design. 

In developing UAV, many aircraft platforms can be used. 

Among them, especially, a helicopter is suitable to the 

application of an intelligent unmanned aerial vehicle since it 

has various, useful maneuvering that other platforms do not 

have. Helicopters can perform various missions which 

fixed-wing aircrafts cannot do because they have abilities such 

as hovering, vertical takeoff-landing, low-speed cruise, 

pirouette, etc. Therefore, RUAV(Rotorcraft-based UAV) 

which has an advantage of various maneuverabilities has been 

developed for many uses, such as military use, observing 

forest fires, spraying agricultural chemicals, aerial 

photographing. Additionally, lately "Pursuit-Evasion" problem, 

which given missions are accomplished using autonomy and 

artificial intelligence with a hybrid system including several 

autonomous UAV or UGVs(Unmanned Ground Vehicle)[6]. 

When flying in a location, which it is difficult for people to 

approach, it is impossible to observe the RUAV and 

dangerousness of crash is increased. Therefore, the automatic 

control for each flight mode is essential in order to increase 

helicopter stability and prevent unexpected accidents. 

The main subject of this paper is the attitude control of 

hovering helicopter. Especially, we design a 6-DOF controller 

for the helicopter that can flight autonomously having sensors 

and a wireless communication device. In addition, we design 

controllers of hovering, one of the most important modes for 

helicopter and validate their performance through computer 

simulation. As mentioned above, since a model helicopter is 

sensitive to disturbance and noise, designing goal is a robust 

controller which can cancel uncertain external effects. 

Helicopter model is derived from general full size 

helicopter model[1]. Nonlinear model obtained is used directly 

to simulation model and linear model for controller design is 

derived as simplified form through linearizing. A parametric 

model for hovering helicopter is identified using collected data 

by the identification algorithm. After deriving model, two 

control theories - conventional control theory and linear robust 

control theory based on state-space - are applied for helicopter 

stabilization. Proposed controllers, although this paper doesn't 

treat, should be tested with a fully equipped real helicopter and 

validated their performance hereafter. 

2. HELICOPTER DYNAMICS 

Helicopter dynamics is a MIMO time-variant system which 

has nonlinearity, inherent instability, and strong coupling. And 

helicopter is exposed to unstable disturbance such as gust or 

side wind while acting in various modes of vertical 

takeoff-landing, hovering, and forward flight. Since 

helicopter's aerodynamic characteristics is very complicated 

and chaotic, it is actually impossible to obtain exact dynamic 

equations for all flight modes mentioned previously. The 

model for simulation and controller design is derived with 

appropriate accuracy which answers the purpose because a 

theoretical model usually has somewhat large error and it 

should be adjusted by experimental data. So, we obtain a 

nonlinear dynamic model of helicopter through the lumped 

parameter approach. In this way, a unique dynamics of small 

model helicopter called “servorotor” is included and general 

dynamics is simplified to a model valid for hovering and 

low-speed cruise. 

2.1 General Characteristics 

Helicopter dynamics follows Newton-Euler equations for 

translational / rotational rigid body. 
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Dynamic equations are represented as the body coordinate 

system. Fext and Mext are the sum of external force and 

moment which rigid body receives and they describe 

dynamics of helicopter definitely. The main problem of 

modeling is finding these terms. Helicopter dynamics consists 

of following components - main rotor, tail rotor, fuselage, 

horizontal stabilizer fin, and vertical stabilizer fin - by using 

the lumped parameter method and is researched by regarding 

these elements as sources of force and moment. Free-body 

diagram of helicopter is shown in Fig. 1. 

Fig. 1 Helicopter Free-body Diagram 

Forces of x, y, z direction are denoted by X, Y, Z 

respectively and Moment terms of roll, pitch, yaw are denoted 

by R, M, N respectively. M, T, F, H, V denote main rotor, tail 

rotor, fuselage, horizontal stabilizer fin, and vertical stabilizer 

fin respectively. Among rotational inertial moments, we can 

express force and moment equations neglecting the cross 

inertia term. 
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In above equations, we evaluate each force and moment 

term and measure geometrical constants such as location of 

center of gravity, main rotor, tail rotor, and stabilizer fin. The 

equation of each force and moment term can be derived 

according to the result of Prouty[1]. However, since related 

aerodynamics is very complicated, it is not easy to derive 

exact equations. When derivation is completed, we can make a 

simulation model and a control model. 

2.2 Helicopter Modeling in Hovering 

Since it is usually impossible to find exact force and 

moment terms in whole flight envelope, in order to obtain 

more accurate and simple equations, we should divide flight 

envelope into several flight modes. In this paper, we derive a 

model equation for hovering mode, one of the most important 

maneuvers, and design a controller. Helicopter dynamics in 

hovering is simplified with following assumptions. 

• Neglect the effect of fuselage, horizontal / vertical 

stabilizer fins because helicopter has very low velocity in 

all direction and attitude deviation is very small. 

• Neglect local inflow of other directions and the tail rotor 

shaft follows +y axis. That is, only lateral thrust, yawing 

moment, and anti-torque of pitch axis are generated. 

According to above two assumptions, derivative equations 

(1, 2) are simplified as followings. 
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Then, with the system equations simplified for hovering, 

each variable of derived equations(3, 4) is evaluated and 

overall equations are as following. 
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Fig. 2 Block-diagram of Helicopter dynamics 

Nonlinear model for hovering is useful as nonlinear 

simulation model and can be simplified in order to obtain 

linear model. Linear dynamic model of helicopter is necessary 

to design linear feedback control system. Now, we define 

nonlinear helicopter dynamics. 

),( uxFx =                (7) 

        where 

[ ]Tss barqpwvux 11ΨΘΦ=  (8) 

[ ]TTMsbsa uuuuu θθ11=          (9) 

ua1s, ub1s : lateral, longitudinal cyclic pitch input 

u M, u T : main, tail rotor collective pitch input 

For nonlinear control model, we can use directly nonlinear 

simulation model or model which has simplified and 

approximated thrust and torque terms. In this paper, the main 

purpose of this research is the design of controller for 

hovering and linear time-invariant model for hovering. 

Therefore, we assume as followings. 

• The velocity and attitude angles are assumed to be very 

small so that the following simplifications are valid. 

xx ≅sin    , 1cos ≅x          (10) 

• With the assumption that the rigid body has small velocity 

and attitude angles in every direction, the Coriolis 

acceleration terms and gyroscopic terms are ignored. 

Applying these assumptions to the original equation, we 

obtain the differential equation. 
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The linearized system equation is defined as the Jacobian 

matrices in the following. 
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The Jacobian, often referred to as the stability derivatives, 

can be found by the partial differentiation of the system 

equation F(x,u). The valuable results on calculating the 

Jacobian were suggested by Prouty[1]. Using his work, the 

Jacobian matrices can be computed by simply plugging in the 

parameters of the target helicopter. 

These parameters are geometric, aerodynamic, and special 

mechanical parameter following helicopter system. Among 

them, while there exist easily measured parameters, usually it 

is very difficult to understand these characteristics without 

special equipments. Moreover, because the airframe is heavy 

and large, it is also difficult to measure the inertia directly. 

Therefore, in this paper, without measuring these parameters, 

we use system identification method to find a system model 

directly using the flight data. 

3. SYSTEM IDENTIFICATION 

As explained in the previous section, we use the parameter 

identification approach instead of using the theoretical model. 

In the following, the template model for the LTI MIMO 

parametric identification is given. This model is proposed by 

Mettler et al in 1999[2]. 

This model also includes the servorotor(Bell-Hiller 

Stabilizer) dynamics, which almost all model helicopters 

adopt, as a first-order approximation. And by having the 

servomotor PWM input as the control input, we do not need to 

identify the servomotors and the linkage gains separately and 

they are identified as a whole in the identification process. In 

the following, the template model is shown. 
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A MIMO model like above can be identified with a number 

of numerical optimization algorithms. In this research, the 

prediction-error method(PEM) in the MATLAB System 

Identification Toolbox is chosen[4]. 

3.1 Real Flight Data 

In order to identify each parameter of system matrices, 

collecting flight data is needed first. For this purpose, UAV 

platform which hardware and software that can measure pilot's 

control inputs and aircraft's responses are installed is needed. 

During experimental flight, pilot gives control inputs for each 

channel(roll, pitch, yaw, heave) and the responses of aircraft 

are recorded in the ground computer through the wireless 

communication device. 

In a certain interval, longitudinal and lateral controls are 

issued in mixed way to capture the cross-coupling of these two 

channels. In the first stage, the controls in the longitudinal and 

the lateral channels are given simultaneously, while other 

channels are controlled to maintain constant value. Next, the 

main rotor collective pitch or the tail rotor collective pitch is 

perturbed. Finally, the control signal is issued into all channels 

simultaneously to check the validity of the cross-coupling 

terms. It should be noted that, due to the coupled and unstable 

dynamics, the pilot has to issue a stabilizing command to keep 

the helicopter in a confined area. This hinders the data 

collection of a one-channel-at-a-time response. 

In this paper, we obtain real-flight experimental results of 

the helicopter with inertial sensors and wireless 

communication device. 

Fig. 3 Kyosho Caliber 30 

The model helicopter used in this experiment is a 

radio-control helicopter called Caliber 30 made by Kyosho 

Industry, Japan. This helicopter has the structure with one 

main-rotor and one tail-rotor. Since it has the Bell-Hiller 

stabilizer system, helicopter dynamics mentioned before can 
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be properly applied. Additionally, it consists of aluminum 

body frame, metal linking device, and so on.

In order to give attitude and position information to 

helicopter stabilizing controller, exact translational / rotational 

acceleration, position should be measured using inertial 

navigation system and GPS. In our experiment, we obtain 

real-flight data with INS produced by MicroInfinity. We use 

also PCB-based RF module which has properties of 39800 bps 

and RS-232C to send obtained data to ground station. 

Obtained real-flight data of the helicopter is shown as Fig. 4. 

Fig. 4 Real-flight Data 

Once adequate flight data has been collected, we identify 

the parameters in the system matrices using an identification 

algorithm. Before feeding the data into the numerical tool, the 

data is preprocessed. The angular rate measurements are 

filtered by zero-phase non-causal discrete-time filters to filter 

out high frequency noise without introducing phase delay. The 

roll and pitch angle measurements are detrended because the 

helicopter has a trim condition, the equilibrium with certain 

nonzero states. 

3.2 Experimental Hover Model 

It should be noted that this method is extremely sensitive to 

the initial guess of the parameters. It also easily trapped in 

local minima of the parameter hypersurface. To obtain 

meaningful results and while avoiding these weaknesses, the 

following technique is devised[3]. First, the attitude dynamics, 

which are augmented with the rotor dynamics, is identified 

using an initial guess. Since the angular rate/rotor dynamics 

are known to be stable, the derived numerical solution 

converges to consistent solutions. Then, the horizontal 

dynamics, the longitudinal and lateral dynamics with linear 

velocity terms u and v are identified while the parameters for 

angular dynamics are fixed. This stage is rather challenging 

due to the unstable linear velocity dynamics. Finally, the 

heave and yaw dynamics are identified in a similar manner 

and the cross-coupling terms are estimated. 

We can observe that the roll and pitch rate show superb 

matching because of the explicit servorotor model. However, 

the model shows rather poor matching in some intervals 

because the actual dynamics is a very complicated of the 

engine, the transient lift, and the cross-coupling with the roll, 

pitch and yaw. In the following, the identified system matrices 

are shown.

Fig. 5 The procedure of system identification using PEM 

The eigenvalues of the identified model are listed in Table 

1. The linearized system model has stable eigenvalues except 

for only one pair of complex conjugate in the right half plane, 

which renders the whole helicopter dynamics unstable. This 

unstable mode is the coupled motion in u and v channels and 

the responses in all other channels are stable. The rotor 

dynamics is essentially symmetric and the difference between 

them is generated by the different values of the mass moment 

of inertia in the roll and pitch axis. 

Table 1 Eigenvalues of the identified helicopter system 

Mode Eigenvalue Mode Eigenvalue 

Phugoid 1 -0.5262±0.0755j Pitch -1.8659±8.2757j

Phugoid 2 0.2458±0.0279j Yaw -8.2845±8.5845j

Roll -1.5725±12.2567j Heave -0.7223 

4. CONTROLLER DESIGN 

The helicopter has inherently unstable, complicated and 

nonlinear dynamics under the significant influence of 

exogenous disturbances and parameter perturbations. To carry 

out given missions, the helicopter needs a feedback controller 

that is consistently reliable. Therefore, in this paper, we seek a 

suboptimal controller using the model-based approach. 

There have been a number of attempts[7, 8, 9] to apply 

modern control theories to the helicopter control problem 

because the modern control approach offers many superior 

features over classical controls such as : decoupling, 

robustness, and sophisticated performance specification, 

although it has not won many practitioners in industries yet. 

Our goal in this research is to design a proper controller for a 

working autopilot system for our helicopters. Although there 

are many fancy control theories promising theoretically 

beautiful results, the reality is, only a handful of these can be 

actually applied to the complicated helicopter dynamics. 

Therefore, we choose to deploy the linear control theory for its 

consistent performance, well-defined theoretical background 

and effectiveness proven by many practitioners. Especially, to 

stabilize helicopter in hovering mode, we design the 

controllers based on the conventional SISO control theory and 

MIMO state-space control such as H .

4.1 Conventional SISO Controller 

The system equation in equations (13~17) represents a 

MIMO system with moderate coupling among the roll, pitch, 

yaw, and heave channels. The roll and pitch responses show 

coupling and the vertical mode agitates the yaw model due to 

the persistently varying anti-torque of main rotor. However, 

this system can be considered to be four sub-systems of roll - 

vy, pitch - vx, yaw and heave channels and each can be 

stabilized by proportional gain controllers. 
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Fig. 6 Decoupling of helicopter dynamics 

The control law by the classical SISO approach is 

established as shown in equation (20). The control law is very 

simple and static. Dynamics of each channel shows 

satisfactory performance only by state feedback with 

proportional gains. Currently, it does not involve any dynamic 

controllers yet because the static control can maintain a 

reasonable performance and the measurements for feedback 

do not require any further filtering[5]. 

yy ppva KvKKu ∆−−Φ−= Φ1

xx ppub KuKKu ∆−−Θ−= Θ1

zz ppwM KwKu ∆−−=θ

Ψ−= ΨKu Tθ               (20) 

Proper gains for each output that can stabilize attitude and 

translational dynamics of helicopter is derived as following. 

First, through the root-locus and step response, we determine 

roughly the interval of gain by trial-error and adapted it in the 

loop. Then, by adjusting gains slightly related to each 

direction(lateral, longitudinal, heave, yaw), we obtain them by 

experience to show stable flight in hovering. 

4.2 H  Controller 

Due to the inherent cross-coupling of the rotor dynamics, 

MIMO control algorithms are more desirable than SISO which 

neglect the effect of coupling. Especially, among many MIMO 

control theories, H  control theory is suitable to helicopter 

control because it satisfies the robustness specification for 

unexpected disturbances and the performance specification. 

Among many robust control theories, especially the design 

procedure of H  controller for the mixed-sensitivity problem 

is briefly explained in the following[10]. 

Fig. 7 Robust control problem 

As shown in Fig. 7, linear time-invariant plant P(s) is 

mapping external input signal w(u1), control input u(u2) to 

control quantity z(y1), observed output y(y2) respectively. 

Optimal H  controller design problem is finding a 

stabilizing controller which makes the closed-loop gain 

between disturbance w and error signal z smaller than gamma, 

satisfying u2(s)=F(s)y2(s).  Gain Ty1u1(s) is the transfer 

function of w to z, and it can be expressed as following 

equation.

γ≤
∞11uyT   where  =

TW

SW
T uy

3

1

11
      (21) 

H  norm is defined as following[11]. 

))((sup)( max jwGsG σ=
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         (22) 

Fig. 8 Mixed-sensitivity problem 

In the mixed-sensitivity problem shown as the block 

diagram like Fig 6, determining W1 and W3 is very important. 

This fact can be confirmed from restraints for mixed-sensiti 

vity H  controller like equation (21)[12]. 

The choice of weighting function should be preceded in 

order to design H  controller of the mixed-sensitivity 

problem. In this paper, weighting functions W1(s) and W3(s)

of performance specification and robustness specification are 

defined as followings. 
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The designed controller shows the result that maximum 

singular value and minimum singular value are almost same in 

frequency interval 10-3<wi<105, control interval. In low 

frequency range which we can validate the performance 

specification, the magnitude is 1(0dB) and the slope in high 

frequency range is maintained at 40dB/sec or more. 

5. SIMULATION 

Fig. 9 shows the structure of compensator which has SISO 

multilooped conventional controller.  Since this simple 

structure doesn't need static and complex calculation as we 

can catch from the control method of equation (20), small 

realtime-calculation load of CPU is its merit. So it is a very 

effective controller. 

Fig. 9 Block diagram of conventional SISO control 

In this paper, the proposed controller is designed, simulated, 

and validated by using MATLAB / Simulink(Version 6.5). 

Moreover, using 6-DOF Animation block of Aerospace 

Blockset, the motion of helicopter can be observed through 

animation. The hovering helicopter controlled by the 

proportional gain controller shows comparatively stable 

motion. The structure of the proposed controller is extremely 

simple but very effective to stabilize target dynamics in the 

result of simulation. 
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Fig. 10 Hovering result with P controller 

Fig. 11 Position control with P controller 

Also, with properly selected weight functions, we derive the 

controller which satisfies the design requirement and carry out 

MATLAB simulation using this controller. The simulation 

result of H controller with the comparison of two proposed 

controller is shown in Fig. 13. Linear MIMO robust controller 

like H shows more stable attitude control performance than 

the proportional controller. 

Fig. 12 H  control MATLAB simulation 

The distribution ranges of attitude angles are similar but the 

amplitude of H  controller is a tenth part of the proportional 

controller. Despite severe disturbance and plant confusion, the 

controllers mentioned above show satisfactory stability and 

tracking performance. While H  controller shows robustness, 

feedback linearization controller has relatively low-level 

performance because of uncertainty and disturbance. 

Fig. 13 Comparison of two proposed controllers

6. CONCLUSION AND FUTURE WORK 

A system identification and the attitude control of hovering 

helicopter are accomplished as the first step for autonomous 

flight of unmanned model helicopter in this paper. 

First, we derive nonlinear 6-DOF equation of motion of 

helicopter and derive state-equations by linearizing with 

proper assumptions based on this equation. Moreover, we 

identify the system with real flight data and the conventional 

SISO multi-loop control and H  control for attitude 

stabilization of hovering unmanned helicopter are applied to 

this identified model. Both of two proposed controllers show 

reasonable performances in computer simulation, especially 

H  controller shows more outstanding performance and 

robustness against disturbance and uncertainty. 

After this research, although the controller for hovering is 

designed, it cannot be ignored that real maneuver of helicopter 

contains various maneuvering modes such as forward flight, 

pirouette, and takeoff-landing with the exception of hovering 

and we also should design a controller of transposition among 

these modes. Therefore, the design and validation of controller 

for each mode should be done. Additionally, real flight tests of 

designed controllers should be done with unmanned model 

helicopter with sensors, wireless communication device, 

FCC(Flight Control Computer) and ground station. 
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