• Title/Summary/Keyword: Transformants

Search Result 416, Processing Time 0.026 seconds

Screening of Cell Cycle-Related Genes of Pleurotus eryngii Using Yeast Mutant Strains

  • Shi, Shanliang;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.70-73
    • /
    • 2010
  • Temperature-sensitive yeast mutants were used to screen for cell cycle-related genes from Pleurotus eryngii genomic DNA. A mushroom genomic DNA library was established and each gene was screened for the ability to rescue seven Saccharomyces cerevisiae temperature-sensitive strains. Hundreds of yeast transformants were selected at restrictive temperatures over $30^{\circ}C$. Plasmids from the transformants that survived were isolated and transformed back into their host strains. The temperature sensitivity of the resulting transformants was tested from $30^{\circ}C$ to $37^{\circ}C$. Ten DNA fragments from P. eryngii were able to rescue yeast temperature-sensitive strains, and their DNA sequences were determined.

Aspergillus niger로 부터 $\alpha$-glucosidase 발현억제 형질전환체의 분리

  • 이동건;이진영;서영배
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.427-429
    • /
    • 1996
  • We have already cloned an extracellular $\alpha$-glucosidase gene from Aspergillus niger with oligonucleotide probe synthesized on the basis of the peptide sequences determined previously. The DNA sequence revealed an open reading frame of 895 amino acids split by three introns. We are attempting to construct an A. niger strain deficient in the $\alpha$-glucosidase enzyme activity, which would be useful for the glucoamylase production without contamination by the industrially undesirable $\alpha$-glucosidase. For destruction of the $\alpha$-glucosidase gene, we try to make transformations. A cloned partial $\alpha$-glucosidase gene was introduced into Aspergillus niger, and transformants with suppressed $\alpha$-glucosidase activity were isolated. The transformants were cultured on YPD medium which contained Hygromycin B at 30$\circ$C. The activity of $\alpha$-glucosidase of the suppressed transformants was compared to that of wild type activity. As shown by southern-hybridization, we detected that the transformant was a heterocaryon.

  • PDF

Method Development for Electrotransformation of Acidithiobacillus caldus

  • Chen, Linxu;Lin, Jianqun;Li, Bing;Lin, Jianqiang;Liu, Xiangmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Acidithiobacillus caldus is an acidophilic, chemolithotrophic bacterium that plays an important role in bioleaching. Gene transformation into A. caldus is difficult, and only the conjugation method was reported successful, which was a relatively sophisticated method. In this research, electrotransformation of A. caldus species was achieved for the first time using A. caldus Y-3 and plasmid pJRD215. Transformants were confirmed by colony PCR specific to the str gene on pJRD215, and the recovery of the plasmid from the presumptive transformants. Optimizations were made and the transformation efficiency was increased from 0.8 to $3.6{\times}10^4$ transformants/${\mu}g$ plasmid DNA. The developed electrotransformation method was convenient in introducing foreign genes into A. caldus.

Screening of Promoter Sequences from Lactic Acid Bacteria Using a Promoter-Selection Vector (Promoter-Selection Vector를 사용한 유산균 Promoter의 탐색)

  • 우승희;김갑석
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.504-509
    • /
    • 1996
  • Promoters which are useful for constructing expression vectors for lactic acid bacteria were obtained from the chromosomal DNA of Lactococcus lactis ssp. lactis MG1363. pBV5030, a promoter-selection vector, replicates in L. lactis and Escherichia coli and carries a promoterless chloramphenicol acetyltransferase gene (cat-86). After examining E. coli transformants which grew on LB media containing chloramphenicol (Cm, 20$\mu\textrm{g}$/mL) , many MG1363 derived DNA fragments which encompass promoter sequences were identified. Some recombinant E. coli cells can grow at the Cm concentration of 1,000$\mu\textrm{g}$/mL. When plasmids from those highly resistant E. coli cells were purified and introduced into L. lactis ssp. lactis MG1614 cells by electroporation, lactococcal transformants showing Cm resistance were obtained. So far, five plasmids with different promoter inserts were introduced into L. lactis MGl614 cells. The maximum level of Cm resistance in L. lactis MG1614 transformants was quite low (20$\mu\textrm{g}$/mL) when compared with that observed in recombinant E. coli cells harboring the same plasmids.

  • PDF

Kanamycin Acetyltransferase Gene from Kanamycin-producing Streptomyces kanamyceticus IFO 13414

  • Joe, Young-Ae;Goo, Yang-Mo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.470-474
    • /
    • 1998
  • A kanamycin producer, Streptomyces kanamyceticus IFO 13414 is highly resistant to kanamycin. Cloning of the kanamycin resistance genes in S. lividans 1326 with pIJ702 gave several kanamycin resistant transformants. Two transformants, S. lividans SNUS 90041 and S. lividan. SNUS 91051 showed similar resistance patterns to various aminoglycoside antibiotics. Gene mapping experiments revealed that plasmids pSJ5030 and pSJ2131 isolated from the transformants have common resistant gene fragments. Subcloning of pSJ5030 gave a 1.8 Kb gene fragment which showed resistance to kanamycin. Cell free extracts of S. lividans SNUS 90041, S. lividans SNUS 91051 and subclone a S. lividans SNUS 91064 showed kanamycin acetyltransferase activity. The detailed gene map is included.

  • PDF

Expression of bovine lactoferrin N-lobe by the green alga, Chlorella vulgaris

  • Koo, Jungmo;Park, Dongjun;Kim, Hakeung
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • The purpose of this study was to express bovine lactoferrin N-lobe in Chlorella vulgaris, a green microalga, using the pCAMBIA1304 vector. Chlorella-codon-optimized bovine lactoferrin N-lobe (Lfb-N gene) was cloned in the expression vector pCAMBIA1304, creating the plasmid pCAMLfb-N. pCAMLfb-N was then introduced into C. vulgaris by electro-transformation. Transformants were separated from BG-11 plates containing 20 ${\mu}g\;mL^{-1}$ hygromycin. Polymerase chain reaction was used to screen transformants harboring Lfb-N gene. Finally, total soluble protein was extracted from the transformants, and the expression of Lfb-N protein was detected using western blotting. Using this method, we successfully expressed bovine lactoferrin in C. vulgaris. Therefore, our results suggested that recombinant lactoferrin N-lobe, which has many uses in the biomedical and pharmaceutical industries, can be produced economically.

Development of Yeast-Vector System for Eukaryotic Gene Cloning - Optimum Condition for Intact Yeast Cell Transformation and Plasmid Stability in the Transformants - (진핵생물 유전자 조작을 위한 효모 vector계 이용에 관한 기초연구 -생효모 형질전환 최적조건과 숙주별 plasmid안정성에 관하여 -)

  • 기우경;조성환;김범규;조무제
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.125-131
    • /
    • 1986
  • In order to obtain the optimum conditions for intact yeast cell transformation in the various yeast host-vector systems, 3 yeast plasmid vectors, YRp7, YEpl3 and YIp5 were introduced into 5 yeast hosts, Saccaromyces cervisiae Dl3-1A, DKD-5D, DBY-746, MC-16 and S2022D with various transformation conditions, and plasmid stabilities in all the transformants were also observed. The highest transformation frequencies in all the host-vector system were obtained in the 16 hour Cultured cell (5.4 $\times$ 10$^6$ - 2.4 $\times$ 10$^8$cells/$m{\ell}$) treated with 0.1-0.2 M lithium chloride in 0.1 M tris-HCl (pH 7.6), 35% polyethylene glycol 4000, and heat-shocked at 42$^{\circ}C$ for 5 minutes after 60 minutes of induction. The intact cell transformation got more transformation frequency in DKD-5D (YRp7) and DBY-746 (YEpl3) than protoplast transformation, but reverse tendency was observed in DKD-5D (YEp13) and Dl3-lA (YRp7). The transformants, D13-1A (YRp7) and DKD-5D (YRp7) were very unstable in selective medium, with 80 to 85% of the transformants losing the plasmid after 70 generations, but the transformants, DKD-5D (YEpl3) and DBY-746 (YEpl3) were quite stable, with 35% of the transformants losing the plasmid.

  • PDF

Characteristic of Progeny in Pepper Transformants (고추 유전자변형체 후대 생육특성 검정)

  • Kwon, Tae-Ryong;Lee, Moon-Jung;Harn, Jung-Sul;Shin, Dong-Hyun;Oh, Jung-Youl;Kim, Kyung-Min;Kim, Chang-Kil
    • Korean Journal of Plant Resources
    • /
    • v.21 no.4
    • /
    • pp.260-264
    • /
    • 2008
  • For the resistance test for Phytophthora blight of $T_1$ and $T_2$ transformants in pepper, Phytophthora blight fungus was inoculated to seedlings of the $T_1$ and $T_2$ transformants by concentration (density: zoospore $10^3/ml$). Occurrence rate of blight at 5days after inoculation was 4.0 % in T1-1 line and 10.0% in $T_1-2$ line, and its rate for 12 days after inoculation was 52.0% in $T_1-1$ line, 64.0% in $T_1-2$ line, respectively. Therefore, the lower occurrence rate to blight was enable to select resistant transformants in the some inoculation density (zoospore $10^3/ml$), meanwhile 'Kumtap' and 'Subicho' were 100% in highest occurrence rate to blight. For field test, in which blight was commonly occurred, of the Youngyang Pepper Experiment Station, the acquired transformant resisting to blight was similar to characteristics of domestic varieties, 'Subic ho' for fruit shape, but there are some differences in growth, days to flowering, fruit characteristics. Occurrence of blight in $T_2-1-6$, and $T_2-4-9$ lines was smaller approxmately 30% than commercial varieties, 'Kumtap', although occurrence of blight in field was showed higher difference among tested lines. In this study, we concluded that the transformants showing blight resistance selected from habitual field could be fixed at every generation, and the developed transformation system was also considered to develop transformants in pepper.

Dye Removal by Phlebia tremellosa and Lignin Degrading Enzyme Transformants (아교버섯(Phlebia tremellosa)의 리그닌 분해효소 형질전환체를 이용한 염료의 탈색)

  • Kum, Hyun-Woo;Ryu, Sun-Hwa;Lee, Sung-Suk;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.93-95
    • /
    • 2010
  • White rot fungi which have lignin degrading enzymes show high degrading activity to diverse recalcitrant compounds such as polycyclic aromatic compounds, dyes, explosives and endocrine disrupting chemicals. We have examined decolorizing activity of dyes by Phlebia tremellosa and two transformants which had genetically transformed using laccase or manganese peroxidase (MnP) gene. In case of methyl green, wild type strain showed 50% decolorization while laccase transformant (TF2-1) and MnP transformant (T5) showed more than 90% decolorization on day 3. Remazol brilliant blue R(RBBR) was decolorized up to 85% by two transformants while the wild type showed 67% decolorization on day 3. Transformants TF2-1 and T5 both showed increased laccase and MnP activity respectively during the whole growing phase.

Genetic Transformation of the Yeast Dekkera/Brettanomyces bruxellensis with Non-Homologous DNA

  • Miklenic, Marina;Stafa, Anamarija;Bajic, Ana;Zunar, Bojan;Lisnic, Berislav;Svetec, Ivan-Kresimir
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.674-680
    • /
    • 2013
  • Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/${\mu}g$ DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.