Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05023

Method Development for Electrotransformation of Acidithiobacillus caldus  

Chen, Linxu (State Key Laboratory of Microbial Technology, Shandong University)
Lin, Jianqun (State Key Laboratory of Microbial Technology, Shandong University)
Li, Bing (State Key Laboratory of Microbial Technology, Shandong University)
Lin, Jianqiang (State Key Laboratory of Microbial Technology, Shandong University)
Liu, Xiangmei (State Key Laboratory of Microbial Technology, Shandong University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 39-44 More about this Journal
Abstract
Acidithiobacillus caldus is an acidophilic, chemolithotrophic bacterium that plays an important role in bioleaching. Gene transformation into A. caldus is difficult, and only the conjugation method was reported successful, which was a relatively sophisticated method. In this research, electrotransformation of A. caldus species was achieved for the first time using A. caldus Y-3 and plasmid pJRD215. Transformants were confirmed by colony PCR specific to the str gene on pJRD215, and the recovery of the plasmid from the presumptive transformants. Optimizations were made and the transformation efficiency was increased from 0.8 to $3.6{\times}10^4$ transformants/${\mu}g$ plasmid DNA. The developed electrotransformation method was convenient in introducing foreign genes into A. caldus.
Keywords
Acidithiobacillus caldus; chemolithotrophic; electrotransformation; optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Hallberg, K. B. and E. B. Lindstrom. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology. 140: 3451-3456.   DOI   ScienceOn
2 Blake, R., M. M. Lyles, and R. Simmons. 1995. Morphological and physical aspects of attachment of Thiobacillus ferrooxidans to pyrite and sulphur, pp. 13-22. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical Processing. University of Chile, Santiago de Chile.
3 Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15: 1311-1326.   DOI   ScienceOn
4 Davison, J., M. Heusterspreute, N. Chevalier, V. Ha-Thi, and F. Brunel. 1987. Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275-280.   DOI
5 Gehrke, T., J. Telegdi, D. Thierry, and W. Sand. 1998. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 64: 2743-2747.
6 Hallberg, K. B. and E. B. Lindstrom. 1996. Multiple serotypes of the moderate thermophile Thiobacillus caldus, a limitation of immunological assays for biomining microorganisms. Appl. Environ. Microbiol. 62: 4243-4246.
7 Hallberg, K. B., M. Dopson, and E. B. Lindstrom. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced inorganic sulfur compounds by Thiobacillus caldus. FEMS Microbiol. Lett. 145: 409-414.   DOI   ScienceOn
8 Liu, J. S., Y. Yan, H. T. Wang, and X. M. Wang. 2007. Progress in research on extracellular polymeric substance of Thiobacillus ferrooxidous. Metal Mine 378: 14-16.
9 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
10 Touvinen, O. H., S. I. Niemela, and H. G. Gyllenberg. 1971. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 13: 517-527.   DOI
11 Simon, J. R. and K. McEntee. 1989. A rapid and efficient procedure for transformation of intact Saccharomyces cerevisiae by electroporation. Biochem. Biophys. Res. Commun. 164: 1157-1164.   DOI   ScienceOn
12 Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acid Res. 16: 6127-6145.   DOI   ScienceOn
13 Edwards, K. J., P. L. Bond, and J. F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals- Environ. Microbiol. 2: 324-332.   DOI   ScienceOn
14 Kamimura, K., T. Okayama, K. Murakami, and T. Sugio. 1999. Isolation and characterization of a moderately thermophilic sulfur-oxidizing bacterium. Microbios 99: 7-18.
15 Hattermann, D. R., and G.. Stacey. 1990. Efficient DNA transformation of Bradyrhizobium japonicum by electroporation. Appl. Environ. Microbiol. 56: 833-836.
16 Calvin, N. M. and P. C. Hanawalt. 1988. High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol. 170: 2796-2801.
17 Alexander, B., S. Leach, and W. J. Ingledew. 1987. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. Gen. Microbiol. 133: 1171-1179.   DOI
18 Swaving, J., W. van Leest, A. J. J. van Ooyen, and J. A. M. de Bont. 1996. Electrotransformation of Xanthobacter autotrophicus GJ10 and other Xanthobacter strains. J. Microbiol. Methods 25: 343-348.   DOI   ScienceOn
19 Pogliani, C. and E. Donati. 1999. The role of exopolymers in the bioleaching of a non-ferrous metal sulphide. J. Ind. Microbiol. Biotechnol. 22: 88-92.   DOI   ScienceOn
20 Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274.   DOI   ScienceOn
21 Liu, H. L., B. Y. Chen, Y. W. Lan, and Y. C. Cheng. 2003. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl. Microbiol. Biotechnol. 62: 414-420.   DOI   ScienceOn
22 Schaeffer, W. I., P. E. Holbert, and W. W. Umbreit. 1963. Attachment of Thiobacillus thiooxidans to sulfur crystals. J. Bacteriol. 85: 137-140.
23 Fromm, M., L. Taylor, and V. Walbot. 1985. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. U.S.A. 82: 5824-5828.   DOI   ScienceOn
24 Iwazaki, K., H. Uchiyama, O. Yagi, T. Kurabayashi, K. Ishizuka, and Y. Takamura. 1994. Transformation of Pseudomonas putida by electroporation. Biosci. Biotech. Biochem. 58: 851-854.   DOI   ScienceOn
25 Kusano, T., K. Sugawara, C. Inoue, T. Takeshima, M. Numata, and T. Shiratori. 1992. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant. J. Bacteriol. 174: 6617-6623.
26 Jin, S. M., W. M. Yan, and Z. N. Wang. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 58: 429-430.
27 Liu, X. M., J. Q. Lin, Z. Zhang, J. Bian, Y. Liu, J. Q. Lin, and W. M. Yan. 2007. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04. J. Microbiol. Biotechnol. 17: 162-167.
28 Simon, R., U. Priefer, and A. Puhier. 1983. A broad host range mobilization system for in vitro genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1: 784-791.   DOI
29 Dopson, M. and E. B. Lindstrom. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40.
30 Gehrke, T., R. Hallmann, and W. Sand. 1995. Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching, pp. 1-11. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical processing. University of Chile, Santiago de Chile.