• Title/Summary/Keyword: Transfer characteristics

Search Result 5,637, Processing Time 0.035 seconds

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

A Study on Measures to Prevent Leakage of Process Fluid from the VCR Fitting used in the Semiconductor Manufacturing Process (반도체 제조 공정에서 사용되는 이송배관 연결부위(VCR Fitting)로부터 공정유체 누출사고 예방 대책에 관한 연구)

  • Dae Joon Lee;Sang Ryung Kim;Sang Gil Kim;Chung Sang Kang;Joon Won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.79-85
    • /
    • 2023
  • Recently, in the semiconductor process, large companies are seeking process changes from memory semiconductors to the foundry due to the increase in demand due to the 4th industry. industry is expanding. The characteristics of special gases and precursors, which are raw materials used to produce these semiconductor chips, are toxic, pyrophoric, inflammable, and corrosive. These semiconductor raw materials are operated in a closed system and do not leak to the outside during normal times, but when leaked, they spread to the inside of the gas box, and when proper ventilation is not provided inside the gas box, they spread to the outside, causing fires, explosions, or toxic substances. It can lead to major accidents such as leakage. Recently, there have been cases of accidents in which hazardous materials leaked from the closed system of the semi conductor process and spread to the inside and outside of the gas box. . In this study, we propose preventive measures based on the case of an accident in which raw material leaked from the VCR fitting, which is the connection part of the semiconductor raw material transfer pipe, and spread to the outside of the gas box.

Determination of volatile and residual iodine during the dissolution of spent nuclear fuel (사용 후 핵연료 용해 중 휘발 및 잔류 요오드 분석)

  • Kim, Jung Suk;Park, Soon Dal;Jeon, Young Shin;Ha, Young Keong;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.395-406
    • /
    • 2009
  • The determination of iodine in the spent nuclear fuel and the volatile behavior during its acid dissolution have been studied by NAA(neutron activation analysis) and electron probe microanalysis (EPMA). Simulated spent fuels (SIMFUELs) were dissolved in $HNO_3$(1+1) at $90^{\circ}C$ for 8 hours. The iodine remained in a dissolver solution after dissolution, and that condensed in dissolution apparatus and trapped in the adsorbent by volatilization during the dissolution were determined, respectively. The condensed iodine was recovered by the redistillation with $HNO_3$(1+1) after transfer of the dissolver solution. The iodines in the dissolver and redistilled solution were separated by solvent extraction followed by ion exchange or precipitation method and determined by RNAA (radiochemical neutron activation analysis). The ion exchange column and filtration kit used for the isolation of iodine, which were prepared with a polyethylene tube, were used as an insert in the pneumatic tube for neutron irradiation. The iodine volatilized during the dissolution of SIMFUELs was collected in a trapping tube containing Ag-silica gel (Ag-impregnated silica gel) adsorbent, and the distribution of iodine trapped in the adsorbents were determined by EPMA. The adsorbing characteristics shown with the SIMFUELs were compared with those shown with a real spent fuel from the nuclear power plant.

Transfer of Arsenic and Mercury from Stabilized Farmland Soil to Lettuce using Calcium Sulfate Fertilizer with Different Physical Properties as a Stabilizing Agent (안정화제로 사용된 황산칼슘비료의 물리적 형태에 따른 토양 비소 및 수은의 안정화와 식물체 전이특성)

  • Il-Ha Koh;Yo Seb Kwon;Min-Hyeon Lee;Jung-Eun Kim;So-Young Park;Ju In Ko;Won Hyun Ji
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.619-628
    • /
    • 2023
  • In this study, we investigated the feasibility of calcium sulfate fertilizer as a stabilizing agent for As and Hg contaminated farmland soil and its stabilization characteristics in 3 different physical forms (particulate, powder, and solution) through a pot experiment including 34 days of lettuce growth. As and Hg contents of the lettuce grown in the stabilized soils were decreased by at least 70%. However the lettuce yield of the soil stabilized with the solution agent was decreased by 46% due to the overabundance of the nutrients from the solution agent. Thus, if a solution-type agent is planned for agricultural farmland soil stabilization, additional tests for optimal dosage are needed to preserve vegetation growth. In Hg fractionation, a lower concentration of elemental fractions and a higher concentration of residual/sulfide fractions were identified in the soils stabilized with the solution, powder, and pariculate agents in descending order while there were no significant changes in As fractionation. Overall results suggest that calcium sulfate fertilizer can be used as a stabilizing agent, and a solution-type agent could be used when the operation of heavy machinery for the soil stabilization process is impossible.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Social Network Analysis of Shared Bicycle Usage Pattern Based on Urban Characteristics: A Case Study of Seoul Data (도시특성에 기반한 공유 자전거 이용 패턴의 소셜 네트워크 분석 연구: 서울시 데이터 사례 분석)

  • Byung Hyun Lee;Il Young Choi;Jae Kyeong Kim
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.147-165
    • /
    • 2020
  • The sharing economy service is now spreading in various fields such as accommodation, cars and bicycles. In particular, bicycle-sharing service have become very popular around the world, and since September 2015, Seoul has been providing a bicycle-sharing service called 'Ttareungi'. However, the number of bicycles is unbalanced among rental stations continuously according to the user's bicycle use. In order to solve these problems, we employed social network analysis using Ttareungi data in Seoul, Korea. We analyzed degree centrality, closeness centrality, betweenness centrality and k-core. As a result, the degree centrality was found to be closely linked with bus or subway transfer center. Closeness centrality was found to be in an unbalanced departure and arrival frequency or poor public transport proximity. Betweenness centrality means where the frequency of departure and arrival occurs frequently. Finally, the k-core analysis showed that Mapo-gu was the most important group by time zone. Therefore, the results of this study may contribute to the planning of relocation and additional installation of bike rental station in Seoul.

Prognostic Value of Dynamic Contrast-Enhanced MRI-Derived Pharmacokinetic Variables in Glioblastoma Patients: Analysis of Contrast-Enhancing Lesions and Non-Enhancing T2 High-Signal Intensity Lesions

  • Yeonah Kang;Eun Kyoung Hong;Jung Hyo Rhim;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn;Sun-Won Park;Seung Hong Choi
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.707-716
    • /
    • 2020
  • Objective: To evaluate pharmacokinetic variables from contrast-enhancing lesions (CELs) and non-enhancing T2 high signal intensity lesions (NE-T2HSILs) on dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging for predicting progression-free survival (PFS) in glioblastoma (GBM) patients. Materials and Methods: Sixty-four GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. We analyzed the pharmacokinetic variables of the volume transfer constant (Ktrans) and volume fraction of extravascular extracellular space within the CEL and NE-T2HSIL of the entire tumor. Univariate and multivariate Cox regression analyses were performed using preoperative clinical characteristics, pharmacokinetic variables of DCE MR imaging, and postoperative molecular biomarkers to predict PFS. Results: The increased mean Ktrans of the CEL, increased 95th percentile Ktrans of the CELs, and absence of methylated O6-methylguanine-DNA methyltransferase promoter were relevant adverse variables for PFS in the univariate analysis (p = 0.041, p = 0.032, and p = 0.083, respectively). The Kaplan-Meier survival curves demonstrated that PFS was significantly shorter in patients with a mean Ktrans of the CEL > 0.068 and 95th percentile Ktrans of the CEL > 0.223 (log-rank p = 0.038 and p = 0.041, respectively). However, only mean Ktrans of the CEL was significantly associated with PFS (p = 0.024; hazard ratio, 553.08; 95% confidence interval, 2.27-134756.74) in the multivariate Cox proportional hazard analysis. None of the pharmacokinetic variables from NE-T2HSILs were significantly related to PFS. Conclusion: Among the pharmacokinetic variables extracted from CELs and NE-T2HSILs on preoperative DCE MR imaging, the mean Ktrans of CELs exhibits potential as a useful imaging predictor of PFS in GBM patients.

Photosynthetic Characteristics of Benthic Microalgae Measured by HPLC and Diving Pulse Amplitude Modulated (PAM) Fluorometry on the Nakdong River Estuary of the Korean Peninsula (HPLC 및 Diving-PAM을 이용한 낙동강 하구 저서미세조류의 광합성 특성)

  • Jeong Bae Kim;Mi Hee Chung;Jung-Im Park
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.61-74
    • /
    • 2024
  • Daemadeung, located in the estuary of the Nakdong River, is formed by sand dunes and possesses well-developed intertidal flats. This study aimed to investigate the habitat of benthic microalgae, photosynthetic pigments, and photosynthetic efficiency in the intertidal flats of Daemadeung from January to December 2011. The inorganic nitrogen content in the sediment pore water was primarily composed of ammonium, while nitrate + nitrite was dominant in the upper layer water. The concentration of chlorophyll a and fucoxanthin in the sediment surface was significantly higher than the mean of all the sediment layer. The average Fv/Fm of benthic microalgae during the entire survey period was 0.52±0.03, with the highest value (0.61±0.08) observed in February. The rETRmax showed a seasonal trend, being high from spring to early autumn (April to October) and low from winter to early spring (January to March, November, December), with the highest value (153.05±2.30 µmol electrons m-2 s-1) in July and the lowest (38.49±5.17 µmol electrons m-2 s-1) in January. The average Fv/Fm of diurnal microalgae was 0.48±0.03, with the highest value (0.61±0.08) observed at noon. The rETRmax showed a highest peak at noon (54.24±11.35 µmol electrons m-2 s-1) and reached its lowest point at 16:00 (26.17±4.75 µmol electrons m-2 s-1). These findings suggest that the productivity of benthic microalgae varies significantly depending on the survey time and sediment depth. Therefore, to quantify the productivity of benthic microalgae using Diving-PAM, surveys should be conducted based on tidal conditions, and simultaneous pigment analysis of sediment layers should also be performed.

Theoretical analysis of power requirement of a four-row tractor-mounted radish collector

  • Khine Myat Swe;Mohammod Ali;Milon Chowdhury;Md Nasim Reza;Md Ashrafuzzaman Gulandaz;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.729-748
    • /
    • 2022
  • Development of radish collectors may enhance radish production and promote upland crop mechanization in the Republic of Korea. Theoretical analysis of power is crucial to ensure the optimum design of agricultural machinery. The aim of the present study is to analyze theoretically the power requirement of a tractor-mounted radish collector under development and to propose design guidelines. The important components of the radish collector were belt-type conveyors, three hydraulic motors, and a direct current (DC) winch motor to operate the total radish collecting process. Theoretical equations were used to calculate the hydraulic motor's power, winch motor power, and draft power at loaded and unloaded conditions. A variety of tractors (44 - 74 kW) and different soil characteristics (hard, firm, tilted, and sandy) were considered to investigate the appropriate drawbar power. Variations of the power requirement of the tractor-mounted radish collector were observed due to modifications of the design parameters. The required hydraulic power of the stem cutting conveyor, stem cutting blade, and transfer conveyor of the radish collector were 0.23 and 0.24, 0.18 and 0.19, and 0.19 and 0.22 kW under unloaded and loaded conditions, respectively. The maximum draft power was calculated as 0.89, 1.07, 1.25, and 1.61 kW at a 30° tilted angle for hard, firm, tilted, and sandy soil, respectively. The calculation showed 2.07 kW DC power was required for unfolding or folding the stem-cutting conveyor. A maximum power of 4.78 kW was prescribed for conducting the whole process of the tractor-mounted radish collector. The analysis of power introduced in this study will be helpful to select the appropriate design parameters for the successful development of a tractor-mounted radish collector.

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane (메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향)

  • Song, Jun-Baek;Im, Hangjoon;Kim, Young-Ju;Jung, Youn-Woong;Ryu, Hee-Beom;Lee, Ju-Ho
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.