• Title/Summary/Keyword: Transcriptome profiling

Search Result 77, Processing Time 0.028 seconds

Temporal Transcriptome Analysis of SARS-CoV-2-Infected Lung and Spleen in Human ACE2-Transgenic Mice

  • Jung Ah, Kim;Sung-Hee, Kim;Jung Seon, Seo;Hyuna, Noh;Haengdueng, Jeong;Jiseon, Kim;Donghun, Jeon;Jeong Jin, Kim;Dain, On;Suhyeon, Yoon;Sang Gyu, Lee;Youn Woo, Lee;Hui Jeong, Jang;In Ho, Park;Jooyeon, Oh;Sang-Hyuk, Seok;Yu Jin, Lee;Seung-Min, Hong;Se-Hee, An;Joon-Yong, Bae;Jung-ah, Choi;Seo Yeon, Kim;Young Been, Kim;Ji-Yeon, Hwang;Hyo-Jung, Lee;Hong Bin, Kim;Dae Gwin, Jeong;Daesub, Song;Manki, Song;Man-Seong, Park;Kang-Seuk, Choi;Jun Won, Park;Jun-Won, Yun;Jeon-Soo, Shin;Ho-Young, Lee;Jun-Young, Seo;Ki Taek, Nam;Heon Yung, Gee;Je Kyung, Seong
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.896-910
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.

RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing

  • Kim, Sunyoung;Park, Jungwook;Kim, Ji Hyeon;Lee, Jongyun;Bang, Bongjun;Hwang, Ingyu;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.249-259
    • /
    • 2013
  • Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::${\Omega}$) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::${\Omega}$). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.

Gene Expression Profiling of the Habenula in Rats Exposed to Chronic Restraint Stress

  • Yoo, Hyeijung;Kim, Hyun Jung;Yang, Soo Hyun;Son, Gi Hoon;Gim, Jeong-An;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.306-316
    • /
    • 2022
  • Chronic stress contributes to the risk of developing depression; the habenula, a nucleus in epithalamus, is associated with many neuropsychiatric disorders. Using genome-wide gene expression analysis, we analyzed the transcriptome of the habenula in rats exposed to chronic restraint stress for 14 days. We identified 379 differentially expressed genes (DEGs) that were affected by chronic stress. These genes were enriched in neuroactive ligand-receptor interaction, the cAMP (cyclic adenosine monophosphate) signaling pathway, circadian entrainment, and synaptic signaling from the Kyoto Encyclopedia of Genes and Genomes pathway analysis and responded to corticosteroids, positive regulation of lipid transport, anterograde trans-synaptic signaling, and chemical synapse transmission from the Gene Ontology analysis. Based on protein-protein interaction network analysis of the DEGs, we identified neuroactive ligand-receptor interactions, circadian entrainment, and cholinergic synapse-related subclusters. Additionally, cell type and habenular regional expression of DEGs, evaluated using a recently published single-cell RNA sequencing study (GSE137478), strongly suggest that DEGs related to neuroactive ligand-receptor interaction and trans-synaptic signaling are highly enriched in medial habenular neurons. Taken together, our findings provide a valuable set of molecular targets that may play important roles in mediating the habenular response to stress and the onset of chronic stress-induced depressive behaviors.

Skin Transcriptome Profiling of the Blass Bloched Rockfish (Sebastes pachycephalus) with Different Body Color Patterns (체색 패턴이 다른 개볼락(Sebastes pachycephalus) 피부 전사체 프로파일링)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.32 no.3
    • /
    • pp.117-129
    • /
    • 2020
  • The body color pattern in fish is a distinctive feature for species identification. The blass bloched rockfish Sebastes pachycephalus is a commercially important marine fish species, distributed in the central and southern parts of Korea and south Hokkaido of Japan. It has a morphological feature divided into four subspecies according to with or lacking distinct spots on the body surface, and to the location of markings on the body surface. However, the genetic basis of body color pattern of S. pachycephalus is still unknown. Thus we analyzed the transcriptome of S. pachycephalus skin samples using RNA-seq analysis to investigate functional genes related to body color patterns. The experimental skin samples were prepared by classified into 'Wild type' (lacking distinct spots and markings) and 'Color type' (with distinct spots and marking). Two skin sample transcriptomes were compared pairwise and the results revealed that were 164 differentially expressed unigenes in the skin samples of 'Wild type' and 'Color type'. Gene Ontology analysis of 164 differentially expressed unigenes showed that these genes were included in the functional group of molecular function (2 genes), biological process (46 genes), and cellular component (6 genes). There were several genes that body color type skin specific expression and the genes were CTL (Galactose-specific lectin nattectin), CUL1 (Cullin-1), CMAS (N-acylneuraminate cytidylyltransferase), NMRK2 (Nicotinamide riboside kinase 2), ALOXE3 (Hydroperoxide isomerase ALOXE3), SLC4A7 (sodium bicarbonate cotransporter 3). Our study is the first attempt to search for functional genes involved in the formation of body color patterns in S. pachycephalus. The differentially expressed unigenes obtained in this study can be used as candidate genes for functional gene study related to body coloration of fish.

XPERNATO-TOX: an Integrated Toxicogenomics Knowledgebase

  • Woo Jung-Hoon;Kim Hyeoun-Eui;Kong Gu;Kim Ju-Han
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.40-44
    • /
    • 2006
  • Toxicogenomics combines transcriptome, proteome and metabolome profiling with conventional toxicology to investigate the interaction between biological molecules and toxicant or environmental stress in disease caution. Toxicogenomics faces the problems of comparison and integration across different sources of data. Cause of unusual characteristics of toxicogenomic data, researcher should be assisted by data analysis and annotation for getting meaningful information. There are already existing repositories which claim to stand for toxicogenomics database. However, those just contain limited abilities for toxicogenomic research. For supporting toxicologist who comes up against toxicogenomic data flood, now we propose novel toxicogenomics knowledgebase system, XPERANTO-TOX. XPERANTO-TOX is an integrated system for toxicogenomic data management and analysis. It is composed of three distinct but closely connected parts. Firstly, Data Storage System is for reposit many kinds of '-omics' data and conventional toxicology data. Secondly, Data Analysis System consists of analytical modules for integrated toxicogenomics data. At last, Data Annotation System is for giving extensive insight of data to researcher.

Protoplast Production from Sphacelaria fusca (Sphacelariales, Phaeophyceae) Using Commercial Enzymes

  • Avila-Peltroche, Jose;Won, Boo Yeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.50-58
    • /
    • 2020
  • Sphacelaria is a filamentous brown algal genus that can be epibiotic on macroalgae, marine plants, and sea turtles. Its important role in benthic ecosystems, exposure to different stressors (e.g., grazing), and use as a model organism make Sphacelaria ideal for assessing physiological responses of organisms to environmental inputs. Single-cell RNA sequencing is a powerful new probe for understanding environmental responses of organisms at the molecular (transcriptome) level, capable of delineating gene regulation in different cell types. In the case of plants, this technique requires protoplasts ("naked" plant cells). The existing protoplast isolation protocols for Sphacelaria use non-commercial enzymes and are low-yielding. This study is the first to report the production of protoplasts from Sphacelaria fusca (Hudson) S.F. Gray, using a combination of commercial enzymes, chelation, and osmolarity treatment. A simple combination of commercial enzymes (cellulase Onozuka RS, alginate lyase, and driselase) with chelation pretreatment and an increased osmolarity (2512 mOsm/L H2O) gave a protoplast yield of 15.08 ± 5.31 × 104 protoplasts/g fresh weight, with all the Sphacelaria cell types represented. Driselase had no crucial effect on the protoplast isolation. However, the increased osmolarity had a highly significant and positive effect on the protoplast isolation, and chelation pretreatment was essential for optimal protoplast yield. The protocol represents a significant step forward for studies on Sphacelaria by efficiently generating protoplasts suitable for cellular studies, including single-cell RNA sequencing and expression profiling.

Transcriptome Analysis to Characterize the Immune Response of NecroX-7 in Mouse CD4+ T Cells

  • Kim, Eun-Jung
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.60-68
    • /
    • 2015
  • NecroX-7 is a novel small compound of the NecroX series based on the indole moiety, which has potent cytoprotective and antioxidant properties. We previously detected potential immune regulatory effects of NecroX-7 in immune related diseases like Graft-versus-Host Disease. However, the function and the underlying mechanisms of immunological effects of NecroX-7 in the immune system have not been well established. In this study, we investigated the immune response characterization of differentially expressed genes of NecroX-7 administration in $CD4^+$ T cells by microarray analysis. $CD4^+$ T cells stimulated with NecroX-7 ($40{\mu}M$) or vehicle for 72 hours resulted in the identification of 337 differentially expressed genes (1.5 fold, P<0.05) by expression profiling analysis. Twenty eight of the explored NecroX-7-regulated genes were related to immune system processes. These genes were validated by quantitative real-time PCR. The most significant genes were glutathione reductase, eukaryotic translation elongation factor 1, lymphotoxin-alpha, heat shock protein 9 and chloride intracellular channel protein 4. These findings demonstrate the strongly immune response of NecroX-7 in $CD4^+$ T cells, suggesting that cytoprotection and immune regulation may underlie the critical aspects of NecroX-7 exposure.

Transcriptional Profiling of the Trichoderma reesei Recombinant Strain HJ48 by RNA-Seq

  • Huang, Jun;Wu, Renzhi;Chen, Dong;Wang, Qingyan;Huang, Ribo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1242-1251
    • /
    • 2016
  • The ethanol production of Trichoderma reesei was improved by genome shuffling in our previous work. Using RNA-Seq, the transcriptomes of T. reesei wild-type CICC40360 and recombinant strain HJ48 were compared under fermentation conditions. Based on this analysis, we defined a set of T. reesei genes involved in ethanol production. Further expression analysis identified a series of glycolysis enzymes, which are upregulated in the recombinant strain HJ48 under fermentation conditions. The differentially expressed genes were further validated by qPCR. The present study will be helpful for future studies on ethanol fermentation as well as the roles of the involved genes. This research reveals several major differences in metabolic pathways between recombinant strain HJ48 and wild-type CICC40360, which relates to the higher ethanol production on the former, and their further research could promote the development of techniques for increasing ethanol production.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.

TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data

  • Lim, Jae Hyun;Lee, Soo Youn;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.51-53
    • /
    • 2017
  • High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.