• Title/Summary/Keyword: Transcriptome Sequencing

Search Result 175, Processing Time 0.024 seconds

Comprehensive Transcriptomic Analysis for Thymic Epithelial Cells of Aged Mice and Humans

  • Sangsin Lee;Seung Geun Song;Doo Hyun Chung
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.36.1-36.16
    • /
    • 2023
  • Thymic epithelial cells (TECs) play a critical role in thymic development and thymopoiesis. As individuals age, TECs undergo various changes that impact their functions, leading to a reduction in cell numbers and impaired thymic selection. These age-related alterations have been observed in both mice and humans. However, the precise mechanisms underlying age-related TEC dysfunction remain unclear. Furthermore, there is a lack of a comprehensive study that connects mouse and human biological processes in this area. To address this gap, we conducted an extensive transcriptome analysis of young and old TECs in mice, complemented by further analysis of publicly available human TEC single-cell RNA sequencing data. Our analysis revealed alterations in both known and unknown pathways that potentially contribute to age-related TEC dysfunction. Specifically, we observed downregulation of pathways related to cell proliferation, T cell development, metabolism, and cytokine signaling in old age TECs. Conversely, TGF-β, BMP, and Wnt signaling pathways were upregulated, which have been known to be associated with age-related TEC dysfunctions or newly discovered in this study. Importantly, we found that these age-related changes in mouse TECs were consistently present in human TECs as well. This cross-species validation further strengthens the significance of our findings. In conclusion, our comprehensive analysis provides valuable insight into the biological and immunological characteristics of aged TECs in both mice and humans. These findings contribute to a better understanding of thymic involution and age-induced immune dysfunction.

Comparison of Cerebral Cortex Transcriptome Profiles in Ischemic Stroke and Alzheimer's Disease Models

  • Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.11 no.3
    • /
    • pp.159-170
    • /
    • 2022
  • Ischemic stroke and Alzheimer's disease (AD) are representative geriatric diseases with a rapidly increasing prevalence worldwide. Recent studies have reported an association between ischemic stroke neuropathology and AD neuropathology. Ischemic stroke shares some similar characteristics with AD, such as glia activation-induced neuroinflammation, amyloid beta accumulation, and neuronal cell loss, as well as some common risk factors with AD progression. Although there are considerable similarities in neuropathology between ischemic stroke and AD, no studies have ever compared specific genetic changes of brain cortex between ischemic stroke and AD. Therefore, in this study, I compared the cerebral cortex transcriptome profile of 5xFAD mice, an AD mouse model, with those of middle cerebral artery occlusion (MCAO) mice, an ischemic stroke mouse model. The data showed that the expression of many genes with important functional implications in MCAO mouse brain cortex were related to synaptic dysfunction and neuronal cell death in 5xFAD mouse model. In addition, changes in various protein-coding RNAs involved in synaptic plasticity, amyloid beta accumulation, neurogenesis, neuronal differentiation, glial activation, inflammation and neurite outgrowth were observed. The findings could serve as an important basis for further studies to elucidate the pathophysiology of AD in patients with ischemic stroke.

Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice

  • Lee, Jeonggeun;Park, Joonwoo;Lee, Yong Yook;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.519-526
    • /
    • 2020
  • Background: Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice model. Methods: The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene Expression Omnibus (GEO) database-based data (GSE26728). In vivo assay to evaluate the protective effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA sequencing. Results: We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several gene set enrichment analysis (GSEA)-derived inflammatory response genes increased by BPA were inhibited by KRG in OVX mice. Conclusion: Our data suggest that BPA has commonly influenced inflammatory response effects on both normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on endocrine disrupting chemicals and OVX mouse.

Comparative Transcriptome Analysis of Queen, Worker, and Larva of Asian Honeybee, Apis cerana

  • Kim, Woo Jin;Lee, Seok Hee;An, Saes Byeol;Kim, Song Eun;Liu, Qin;Choi, Jae Young;Je, Yeon Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.271-276
    • /
    • 2013
  • The Asian honeybee, Apis cerana, is a native honeybee species in Korea which is important in agriculture for pollination and honey production. For better understanding of the physiology of A. cerana, high-throughput Illumina transcriptome sequencing was performed to analyze the gene expression profiles of queen, worker, and larva. A total of 219,799,682 clean reads corresponding to 22.2 Gb of nucleotide sequences was obtained from the whole body total RNA samples. The Apis mellifera reference mRNA sequence database was used to measure the gene expression level with Bowtie2 and eXpress software, and the Illumina short reads were then mapped to 11,459 out of 11,736 A. mellifera reference genes. Total of 9,221 genes with FPKM value greater than 5 of each sample group were subjected to eggNOG with BLASTX for gene ontology analysis. The differential gene expression between queen and worker, and worker and larva were analyzed to screen the overexpressed genes in each sample group. In the queen and worker sample group, total of 1,766 genes were differentially expressed with 887 and 879 genes overexpressed over two folds in queen and worker, respectively. In the worker and larva sample group, total of 1,410 genes were differentially expressed with 1,009 and 401 genes overexpressed over two folds in worker and larva, respectively.

Comparison of transcriptome between high- and low-marbling fineness in longissimus thoracis muscle of Korean cattle

  • Beak, Seok-Hyeon;Baik, Myunggi
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.196-203
    • /
    • 2022
  • Objective: This study compared differentially expressed genes (DEGs) between groups with high and low numbers of fine marbling particles (NFMP) in the longissimus thoracis muscle (LT) of Korean cattle to understand the molecular events associated with fine marbling particle formation. Methods: The size and distribution of marbling particles in the LT were assessed with a computer image analysis method. Based on the NFMP, 10 LT samples were selected and assigned to either high- (n = 5) or low- (n = 5) NFMP groups. Using RNA sequencing, LT transcriptomic profiles were compared between the high- and low-NFMP groups. DEGs were selected at p<0.05 and |fold change| >2 and subjected to functional annotation. Results: In total, 328 DEGs were identified, with 207 up-regulated and 121 down-regulated genes in the high-NFMP group. Pathway analysis of these DEGs revealed five significant (p<0.05) Kyoto encyclopedia of genes and genomes pathways; the significant terms included endocytosis (p = 0.023), protein processing in endoplasmic reticulum (p = 0.019), and adipocytokine signaling pathway (p = 0.024), which are thought to regulate adipocyte hypertrophy and hyperplasia. The expression of sirtuin4 (p<0.001) and insulin receptor substrate 2 (p = 0.043), which are associated with glucose uptake and adipocyte differentiation, was higher in the high-NFMP group than in the low-NFMP group. Conclusion: Transcriptome differences between the high- and low-NFMP groups suggest that pathways regulating adipocyte hyperplasia and hypertrophy are involved in the marbling fineness of the LT.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

Transcriptome Analysis Reveals the Putative Polyketide Synthase Gene Involved in Hispidin Biosynthesis in Sanghuangporus sanghuang

  • Jiansheng Wei;Liangyan Liu;Xiaolong Yuan;Dong Wang;Xinyue Wang;Wei Bi;Yan Yang;Yi Wang
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.360-371
    • /
    • 2023
  • Hispidin is an important styrylpyrone produced by Sanghuangporus sanghuang. To analyze hispidin biosynthesis in S. sanghuang, the transcriptomes of hispidin-producing and non-producing S. sanghuang were determined by Illumina sequencing. Five PKSs were identified using genome annotation. Comparative analysis with the reference transcriptome showed that two PKSs (ShPKS3 and ShPKS4) had low expression levels in four types of media. The gene expression pattern of only ShPKS1 was consistent with the yield variation of hispidin. The combined analyses of gene expression with qPCR and hispidin detection by liquid chromatography-mass spectrometry coupled with ion-trap and time-of-flight technologies (LCMS-IT-TOF) showed that ShPKS1 was involved in hispidin biosynthesis in S. sanghuang. ShPKS1 is a partially reducing PKS gene with extra AMP and ACP domains before the KS domain. The domain architecture of ShPKS1 was AMP-ACP-KS-AT-DH-KR-ACP-ACP. Phylogenetic analysis shows that ShPKS1 and other PKS genes from Hymenochaetaceae form a unique monophyletic clade closely related to the clade containing Agaricales hispidin synthase. Taken together, our data indicate that ShPKS1 is a novel PKS of S. sanghuang involved in hispidin biosynthesis.

From genome sequencing to the discovery of potential biomarkers in liver disease

  • Oh, Sumin;Jo, Yeeun;Jung, Sungju;Yoon, Sumin;Yoo, Kyung Hyun
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.299-310
    • /
    • 2020
  • Chronic liver disease progresses through several stages, fatty liver, steatohepatitis, cirrhosis, and eventually, it leads to hepatocellular carcinoma (HCC) over a long period of time. Since a large proportion of patients with HCC are accompanied by cirrhosis, it is considered to be an important factor in the diagnosis of liver cancer. This is because cirrhosis leads to an irreversible harmful effect, but the early stages of chronic liver disease could be reversed to a healthy state. Therefore, the discovery of biomarkers that could identify the early stages of chronic liver disease is important to prevent serious liver damage. Biomarker discovery at liver cancer and cirrhosis has enhanced the development of sequencing technology. Next generation sequencing (NGS) is one of the representative technical innovations in the biological field in the recent decades and it is the most important thing to design for research on what type of sequencing methods are suitable and how to handle the analysis steps for data integration. In this review, we comprehensively summarized NGS techniques for identifying genome, transcriptome, DNA methylome and 3D/4D chromatin structure, and introduced framework of processing data set and integrating multi-omics data for uncovering biomarkers.

Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets

  • Zhang, Jing;Wang, Jing;Zhang, Xiong;Zhao, Chunping;Zhou, Sixuan;Du, Chunlin;Tan, Ya;Zhang, Yu;Shi, Kaizhi
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.18
    • /
    • 2022
  • Background: Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives: To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods: The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results: All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions: These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts;Sze Chun Chan;Qian-Fang Meng;Shan He;Lang Rao;Xindong Liu;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.22.1-22.25
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.