DOI QR코드

DOI QR Code

Comprehensive Transcriptomic Analysis for Thymic Epithelial Cells of Aged Mice and Humans

  • Sangsin Lee (Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Seung Geun Song (Department of Pathology, Seoul National University College of Medicine) ;
  • Doo Hyun Chung (Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine)
  • Received : 2023.07.19
  • Accepted : 2023.08.07
  • Published : 2023.10.31

Abstract

Thymic epithelial cells (TECs) play a critical role in thymic development and thymopoiesis. As individuals age, TECs undergo various changes that impact their functions, leading to a reduction in cell numbers and impaired thymic selection. These age-related alterations have been observed in both mice and humans. However, the precise mechanisms underlying age-related TEC dysfunction remain unclear. Furthermore, there is a lack of a comprehensive study that connects mouse and human biological processes in this area. To address this gap, we conducted an extensive transcriptome analysis of young and old TECs in mice, complemented by further analysis of publicly available human TEC single-cell RNA sequencing data. Our analysis revealed alterations in both known and unknown pathways that potentially contribute to age-related TEC dysfunction. Specifically, we observed downregulation of pathways related to cell proliferation, T cell development, metabolism, and cytokine signaling in old age TECs. Conversely, TGF-β, BMP, and Wnt signaling pathways were upregulated, which have been known to be associated with age-related TEC dysfunctions or newly discovered in this study. Importantly, we found that these age-related changes in mouse TECs were consistently present in human TECs as well. This cross-species validation further strengthens the significance of our findings. In conclusion, our comprehensive analysis provides valuable insight into the biological and immunological characteristics of aged TECs in both mice and humans. These findings contribute to a better understanding of thymic involution and age-induced immune dysfunction.

Keywords

Acknowledgement

This research was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government Ministry of Science and ICT (MSIT) (grant No: NRF-2020R1A2C2008312 and RS-2023-00217571). This study was also supported by grant No. 0320200010 from the SNUH Research Fund.

References

  1. Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic epithelial cells contribute to thymopoiesis and T cell development. Front Immunol 2020;10:3099.
  2. Abramson J, Anderson G. Thymic epithelial cells. Annu Rev Immunol 2017;35:85-118. https://doi.org/10.1146/annurev-immunol-051116-052320
  3. Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 2009;30:374-381. https://doi.org/10.1016/j.it.2009.05.001
  4. Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age-related thymic involution: mechanisms and functional impact. Aging Cell 2022;21:e13671.
  5. Gui J, Mustachio LM, Su DM, Craig RW. Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis 2012;3:280-290.
  6. Palmer S, Albergante L, Blackburn CC, Newman TJ. Thymic involution and rising disease incidence with age. Proc Natl Acad Sci U S A 2018;115:1883-1888. https://doi.org/10.1073/pnas.1714478115
  7. Palmer DB. The effect of age on thymic function. Front Immunol 2013;4:316.
  8. Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 2003;5:225-234. https://doi.org/10.1186/ar974
  9. Dumont-Lagace M, St-Pierre C, Perreault C. Sex hormones have pervasive effects on thymic epithelial cells. Sci Rep 2015;5:12895.
  10. Swann JB, Happe C, Boehm T. Elevated levels of Wnt signaling disrupt thymus morphogenesis and function. Sci Rep 2017;7:785.
  11. Hauri-Hohl MM, Zuklys S, Keller MP, Jeker LT, Barthlott T, Moon AM, Roes J, Hollander GA. TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 2008;112:626-634. https://doi.org/10.1182/blood-2007-10-115618
  12. Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, Pignata C. Foxn1: a master regulator gene of thymic epithelial development program. Front Immunol 2013;4:187.
  13. Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, et al. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. Elife 2020;9:e56221.
  14. Tong QY, Zhang JC, Guo JL, Li Y, Yao LY, Wang X, Yang YG, Sun LG. Human thymic involution and aging in humanized mice. Front Immunol 2020;11:1399.
  15. Fujimori S, Ohigashi I, Abe H, Matsushita Y, Katagiri T, Taketo MM, Takahama Y, Takada S. Finetuning of βcatenin in mouse thymic epithelial cells is required for postnatal T-cell development. Elife 2022;11:e69088.
  16. Dutilh BE, de Boer RJ. Decline in excision circles requires homeostatic renewal or homeostatic death of naive T cells. J Theor Biol 2003;224:351-358. https://doi.org/10.1016/S0022-5193(03)00172-3
  17. den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mogling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 2012;36:288-297. https://doi.org/10.1016/j.immuni.2012.02.006
  18. Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD, et al. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat Commun 2021;12:1096.
  19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
  20. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 2011;12:323.
  21. Sun J, Nishiyama T, Shimizu K, Kadota K. TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 2013;14:219.
  22. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
  23. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-140. https://doi.org/10.1093/bioinformatics/btp616
  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. https://doi.org/10.1073/pnas.0506580102
  25. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023;51:D638-D646. https://doi.org/10.1093/nar/gkac1000
  26. Qi Y, Zhang R, Lu Y, Zou X, Yang W. Aire and Fezf2, two regulators in medullary thymic epithelial cells, control autoimmune diseases by regulating TSAs: partner or complementer? Front Immunol 2022;13:948259.
  27. Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 2015;163:975-987. https://doi.org/10.1016/j.cell.2015.10.013
  28. Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Hollander GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K. IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. J Immunol 2013;190:6173-6179. https://doi.org/10.4049/jimmunol.1202573
  29. Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic epithelial cell-derived IL-15 and IL-15 receptor α chain foster local environment for type 1 innate like T cell development. Front Immunol 2021;12:623280.
  30. Cowan JE, Malin J, Zhao Y, Seedhom MO, Harly C, Ohigashi I, Kelly M, Takahama Y, Yewdell JW, Cam M, et al. Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nat Commun 2019;10:5498.
  31. Rodrigues PM, Ribeiro AR, Perrod C, Landry JJ, Araujo L, Pereira-Castro I, Benes V, Moreira A, Xavier-Ferreira H, Meireles C, et al. Thymic epithelial cells require p53 to support their long-term function in thymopoiesis in mice. Blood 2017;130:478-488. https://doi.org/10.1182/blood-2016-12-758961
  32. Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, Shah YM, Omary MB, Liu Y, Qi L, et al. Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc Natl Acad Sci U S A 2019;116:19090-19097. https://doi.org/10.1073/pnas.1901056116
  33. Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020;367:eaay3224.
  34. Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 2008;135:579-588. https://doi.org/10.1242/dev.007047
  35. Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol 2016;37:185-197. https://doi.org/10.1007/s13277-015-4450-7
  36. Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J, Busslinger M, Beug H. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 1992;71:1103-1116. https://doi.org/10.1016/S0092-8674(05)80060-1
  37. Satoh R, Kakugawa K, Yasuda T, Yoshida H, Sibilia M, Katsura Y, Levi B, Abramson J, Koseki Y, Koseki H, et al. Requirement of stat3 signaling in the postnatal development of thymic medullary epithelial cells. PLoS Genet 2016;12:e1005776.
  38. Barthlott T, Handel AE, Teh HY, Wirasinha RC, Hafen K, Zuklys S, Roch B, Orkin SH, de Villartay JP, Daley SR, et al. Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. Nat Commun 2021;12:3933.
  39. Kadouri N, Givony T, Nevo S, Hey J, Ben Dor S, Damari G, Dassa B, Dobes J, Weichenhan D, Bahr M, et al. Transcriptional regulation of the thymus master regulator Foxn1. Sci Immunol 2022;7:eabn8144.
  40. Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021;13:210.
  41. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol 2014;30:16-22. https://doi.org/10.3109/09513590.2013.852531
  42. Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 2020;17:2.
  43. Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: implications for declined immunity and tissue repair. Ageing Res Rev 2021;65:101231.
  44. Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 2013;13:831-838. https://doi.org/10.1038/nri3534
  45. Semwal MK, Jones NE, Griffith AV. Metabolic regulation of thymic epithelial cell function. Front Immunol 2021;12:636072.
  46. Griffith AV, Venables T, Shi J, Farr A, van Remmen H, Szweda L, Fallahi M, Rabinovitch P, Petrie HT. Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Reports 2015;12:1071-1079. https://doi.org/10.1016/j.celrep.2015.07.008
  47. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Hollander GA. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 2002;3:1102-1108. https://doi.org/10.1038/ni850
  48. Bleul CC, Boehm T. BMP signaling is required for normal thymus development. J Immunol 2005;175:5213-5221. https://doi.org/10.4049/jimmunol.175.8.5213
  49. Frey P, Devisme A, Schrempp M, Andrieux G, Boerries M, Hecht A. Canonical bmp signaling executes epithelial-mesenchymal transition downstream of snail1. Cancers (Basel) 2020;12:1019.
  50. Gordon J, Patel SR, Mishina Y, Manley NR. Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 2010;339:141-154. https://doi.org/10.1016/j.ydbio.2009.12.026
  51. Swann JB, Krauth B, Happe C, Boehm T. Cooperative interaction of BMP signalling and Foxn1 gene dosage determines the size of the functionally active thymic epithelial compartment. Sci Rep 2017;7:8492.
  52. Wertheimer T, Velardi E, Tsai J, Cooper K, Xiao S, Kloss CC, Ottmuller KJ, Mokhtari Z, Brede C, deRoos P, et al. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Sci Immunol 2018;3:eaal2736.
  53. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015;163:811-828. https://doi.org/10.1016/j.cell.2015.10.044
  54. Ucar O, Li K, Dvornikov D, Kreutz C, Timmer J, Matt S, Brenner L, Smedley C, Travis MA, Hofmann TG, et al. A thymic epithelial stem cell pool persists throughout ontogeny and is modulated by TGF-β. Cell Reports 2016;17:448-457. https://doi.org/10.1016/j.celrep.2016.09.027