DOI QR코드

DOI QR Code

Transcriptome Analysis Reveals the Putative Polyketide Synthase Gene Involved in Hispidin Biosynthesis in Sanghuangporus sanghuang

  • Jiansheng Wei (Haba Snow Mountain Provincial Nature Reserve Management and Protection Bureau) ;
  • Liangyan Liu (College of Agronomy and Biotechnology, Yunnan Agriculture University) ;
  • Xiaolong Yuan (Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland) ;
  • Dong Wang (Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland) ;
  • Xinyue Wang (Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland) ;
  • Wei Bi (Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland) ;
  • Yan Yang (Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences) ;
  • Yi Wang (Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry & Grassland)
  • Received : 2023.06.06
  • Accepted : 2023.08.30
  • Published : 2023.10.31

Abstract

Hispidin is an important styrylpyrone produced by Sanghuangporus sanghuang. To analyze hispidin biosynthesis in S. sanghuang, the transcriptomes of hispidin-producing and non-producing S. sanghuang were determined by Illumina sequencing. Five PKSs were identified using genome annotation. Comparative analysis with the reference transcriptome showed that two PKSs (ShPKS3 and ShPKS4) had low expression levels in four types of media. The gene expression pattern of only ShPKS1 was consistent with the yield variation of hispidin. The combined analyses of gene expression with qPCR and hispidin detection by liquid chromatography-mass spectrometry coupled with ion-trap and time-of-flight technologies (LCMS-IT-TOF) showed that ShPKS1 was involved in hispidin biosynthesis in S. sanghuang. ShPKS1 is a partially reducing PKS gene with extra AMP and ACP domains before the KS domain. The domain architecture of ShPKS1 was AMP-ACP-KS-AT-DH-KR-ACP-ACP. Phylogenetic analysis shows that ShPKS1 and other PKS genes from Hymenochaetaceae form a unique monophyletic clade closely related to the clade containing Agaricales hispidin synthase. Taken together, our data indicate that ShPKS1 is a novel PKS of S. sanghuang involved in hispidin biosynthesis.

Keywords

Acknowledgement

The research was funded by General Project of Basic Research Program in Yunnan Province (project no. 202101AT070218), the National Natural Science Foundation of China (Project No. 31860177), and the Reserve Talents for Young and Middle-aged Academic and Technical Leaders of the Yunnan Province (Project No. 202205AC160044).

References

  1. El Hassane A, Shah ASA, Hassan NB, et al. Antioxidant activity of hispidin oligomers from medicinal fungi: a DFT study. Molecules. 2014;19(3):3489-3507. doi: 10.3390/molecules19033489.
  2. Chandimali N, Jin WY, Huynh DL, et al. Combination effects of hispidin and gemcitabine via inhibition of stemness in pancreatic cancer stem cells. Anticancer Res. 2018;38(7):3967-3975. doi: 10.21873/anticanres.12683.
  3. Zhang H, Chen R, Zhang J, et al. The integration of metabolome and proteome reveals bioactive polyphenols and hispidin in ARTP mutagenized Phellinus baumii. Sci Rep. 2019;9(1):16172. doi: 10.1038/s41598-019-52711-7.
  4. Shao HJ, Jeong JB, Kim KJ, et al. Anti-inflammatory activity of mushroom-derived hispidin through blocking of NF-jB activation. J Sci Food Agric. 2015;95(12):2482-2486. doi: 10.1002/jsfa.6978.
  5. Han YH, Chen DQ, Jin MH, et al. Anti-inflammatory effect of hispidin on LPS induced macrophage inflammation through MAPK and JAK1/STAT3 signaling pathways. Appl Biol Chem. 2020;63(1):1-9. doi: 10.1186/s13765-020-00504-2.
  6. Serseg T, Benarous K, Yousfi M. Hispidin and lepidine E: two natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019-nCoVMpro), molecular docking and SAR study. Curr Comput Aided Drug Des. 2021;17(3):469-479. doi: 10.2174/1573409916666200422075440.
  7. Tamrakar S, Fukami K, Parajuli GP, et al. Antiallergic activity of the wild mushrooms of Nepal and the pure compound hispidin. J Med Food. 2019;22(2):225-227. doi: 10.1089/jmf.2018.4267.
  8. Chen W, Feng L, Huang Z, et al. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation. Chem Biol Interact. 2012;199(3):137-142. doi: 10.1016/j.cbi.2012.07.001.
  9. Lai MC, Liu WY, Liou SS, et al. Hispidin in the medicinal fungus protects dopaminergic neurons from JNK activa-tion-regulated mitochondrial-dependent apoptosis in an MPP+-induced in vitro model of parkinson's disease. Nutrients. 2023;15(3):549. doi: 10.3390/nu15030549.
  10. Lee S, Lee J, Choi K, et al. Polylactic acid and polycaprolactone blended cosmetic microneedle for transdermal hispidin delivery system. Appl Sci. 2021;11(6):2774. doi: 10.3390/app11062774.
  11. Palkina KA, Balakireva AV, Belozerova OA, et al. Domain truncation in hispidin synthase orthologs from non-bioluminescent fungi does not lead to hispidin biosynthesis. Int J Mol Sci. 2023;24(2):1317. doi: 10.3390/ijms24021317.
  12. Edwards RL, Lewis DG, Wilson DV. 983. Constituents of the higher fungi. Part I. Hispidin, a new 4-hydroxy-6-styryl-2-pyrone from Polyporus hispidus (Bull.). J. Chem. Soc. 1961;4995-5002. doi: 10.1039/jr9610004995.
  13. Fiasson JL. Distribution of styrylpyrones in the basidiocarps of various hymenochaetaceae. Biochem Syst Ecol. 1982;10(4):289-296. doi: 10.1016/0305-1978(82)90002-3.
  14. Li IC, Chang FC, Kuo CC, et al. Pilot study: nutritional and preclinical safety investigation of fermented hispidin-enriched Sanghuangporus sanghuang mycelia: a promising functional food material to improve sleep. Front Nutr. 2021;8:788965. doi: 10.3389/fnut.2021.788965.
  15. Lee IK, Cho SM, Seok SJ, et al. Chemical constituents of Gymnopilus spectabilis and their antioxidant activity. Mycobiology. 2008;36(1):55-59. doi: 10.4489/MYCO.2008.36.1.055.
  16. Han JJ, Bao L, He LW, et al. Phaeolschidins A-E, five hispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the Tibetan Plateau. J Nat Prod. 2013; 76(8):1448-1453. doi: 10.1021/np400234u.
  17. Oba Y, Suzuki Y, Martins GN, et al. Identification of hispidin as a bioluminescent active compound and its recycling biosynthesis in the luminous fungal fruiting body. Photochem Photobiol Sci. 2017;16(9):1435-1440. doi: 10.1039/c7pp00216e.
  18. Beckert C, Horn C, Schnitzler JP, et al. Styrylpyrone biosynthesis in Equisetum arvense. Phytochemistry. 1997;44(2):275-283. doi: 10.1016/S0031-9422(96)00543-2.
  19. Yousfi M, Djeridane A, Bombarda I, et al. Isolation and characterization of a new hispolone derivative from antioxidant extracts of Pistacia atlantica. Phytother Res. 2009;23(9):1237-1242. doi: 10.1002/ptr.2543.
  20. Fernandes NDS, Desoti VC, Dias A, et al. Styrylpyrone, isolated from an amazon plant, induces cell cycle arrest and autophagy in Leishmania amazonensis. Nat Prod Res. 2021;35(22):4729-4733. doi: 10.1080/14786419.2020.1715395.
  21. Abd Wahab NZ, Ibrahim N. Styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus binds to dengue virus serotype-2 envelope protein and inhibits early stage of virus replication. Molecules. 2022;27(14):4566. doi: 10.3390/molecules27144566.
  22. Perrin PW, Towers GHN. Hispidin biosynthesis in cultures of Polyporus hispidus. Phytochemistry. 1973;12(3):589-592. doi: 10.1016/S0031-9422(00)84448-9.
  23. Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol. 2003;7(2):285-295. doi: 10.1016/s1367-5931(03)00020-6.
  24. Kroken S, Glass NL, Taylor JW, et al. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA. 2003;100(26):15670-15675. doi: 10.1073/pnas.2532165100.
  25. Heo KT, Lee B, Jang JH, et al. Construction of an artificial biosynthetic pathway for the styrylpyrone compound 11-methoxy-bisnoryangonin produced in engineered Escherichia coli. Front Microbiol. 2021;12:714335. doi: 10.3389/fmicb.2021.714335.
  26. Wu Y, Chen MN, Li S. De novo biosynthesis of diverse plant-derived styrylpyrones in Saccharomyces cerevisiae. Metab Eng Commun. 2022;14:e00195. doi: 10.1016/j.mec.2022.e00195.
  27. Wu SH, Dai YC. Species clarification of the medicinal fungus sanghuang. Mycosystema. 2020;39(5):781-794.
  28. Cheng J, Song J, Wang Y, et al. Conformation and anticancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells. Food Res Int. 2022;156(7):111336. doi: 10.1016/j.foodres.2022.111336.
  29. Cai C, Ma J, Han C, et al. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci Rep. 2019;9(1):1-10. https://doi.org/10.1038/s41598-018-37186-2
  30. Lin WC, Deng JS, Huang SS, et al. Anti-inflammatory activity of Sanghuangporus sanghuang mycelium. Int J Mol Sci. 2017;18(2):347. doi: 10.3390/ijms18020347.
  31. Cheng J, Song J, Wei H, et al. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. Int J Biol Macromol. 2020;164:3305-3314. doi: 10.1016/j.ijbiomac.2020.08.202.
  32. Zhou LW, Ghobad-Nejhad M, Tian XM, et al. Current status of 'sanghuang' as a group of medicinal mushrooms and their perspective in industry development. Food Rev Int. 2022;38(4):589-607. doi: 10.1080/87559129.2020.1740245.
  33. Ma JX, Cai CS, Liu JJ, et al. In vitro antibacterial and antitumor activity of total triterpenoids from a medicinal mushroom Sanghuangporus sanghuang (agaricomycetes) in liquid fermentation culture. Int J Med Mushrooms. 2021;23(7):27-39. doi: 10.1615/IntJMedMushrooms.2021038916.
  34. Li T, Chen L, Wu D, et al. The structural characteristics and biological activities of intracellular polysaccharide derived from mutagenic Sanghuangporous sanghuang strain. Molecules. 2020;25(16):3693. doi: 10.3390/molecules25163693.
  35. Li T, Mei Y, Li J, et al. Comparative compositions and activities of flavonoids from nine sanghuang strains based on solid-state fermentation and in vitro assays. Fermentation. 2023;9(3):308. doi: 10.3390/fermentation9030308.
  36. Zhang XR, Zhang ZY, Wang Y, et al. Zn(II)2Cys6-type transcription factors in Sanghuangporus sanghuang grown under different carbon and nitrogen sources. Mycosystema. 2021;40(7):1676-1687.
  37. Kim D, Langmead B, Salzberg SL. DHISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357-360. doi: 10.1038/nmeth.3317.
  38. Fujii T, Yoshimoto H, Tamai Y. Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltransferase. J. Ferment. Bioeng. 1996;81(6):538-542. doi: 10.1016/0922-338X(96)81476-0.
  39. Funa N, Awakawa T, Horinouchi S. Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa. J Biol Chem. 2007; 282(19):14476-14481. doi: 10.1074/jbc.M701239200.
  40. Zhang H, Li Z, Zhou S, et al. A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin. Nat Commun. 2022;13(1):6361. doi: 10.1038/s41467-022-34150-7.
  41. Furumura S, Ozaki T, Sugawara A, et al. Identification and functional characterization of fungal chalcone synthase and chalcone isomerase. J Nat Prod. 2023;86(2):398-405. doi: 10.1021/acs.jnatprod.2c01027.
  42. Zhang W, Zhang X, Feng D, et al. Discovery of a unique flavonoid biosynthesis mechanism in fungi by genome mining. Angew Chem Int Ed Engl. 2023;62(12):e202215529. doi: 10.1002/anie.202215529.
  43. Ke HM, Lee HH, Lin CYI, et al. Mycena genomes resolve the evolution of fungal bioluminescence. Proc Natl Acad Sci USA. 2020;117(49):31267-31277. doi: 10.1073/pnas.2010761117.
  44. Wasil Z, Pahirulzaman KAK, Butts C, et al. One pathway, many compounds: heterologous expression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity. Chem Sci. 2013;4(10):3845. doi: 10.1039/c3sc51785c.
  45. Pan R, Bai XL, Chen JW, et al. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front Microbiol. 2019;10:294. doi: 10.3389/fmicb.2019.00294.
  46. Hemphill CFP, Sureechatchaiyan P, Kassack MU, et al. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot. 2017;70(6):726-732. doi: 10.1038/ja.2017.21.
  47. Li IC, Chen CC, Sheu SJ, et al. Optimized production and safety evaluation of hispidin-enriched sanghuangporus sanghuang mycelia. Food Sci Nutr. 2020;8(4):1864-1873. doi: 10.1002/fsn3.1469.
  48. Huo J, Zhong S, Du X, et al. Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values. J Adv Res. 2020;24:325-335. doi: 10.1016/j.jare.2020.04.011.
  49. Shao Y, Guo H, Zhang J, et al. The genome of the medicinal macrofungus sanghuang provides insights into the synthesis of diverse secondary metabolites. Front Microbiol. 2019;10:3035. doi: 10.3389/fmicb.2019.03035.
  50. Jiang JH, Wu SH, Zhou LW. The first whole genome sequencing of Sanghuangporus sanghuang provides insights into its medicinal application and evolution. JoF. 2021;7(10):787. doi: 10.3390/jof7100787.
  51. Duan Y, Han H, Qi J, et al. Genome sequencing of Inonotus obliquus reveals insights into candidate genes involved in secondary metabolite biosynthesis. BMC Genomics. 2022;23(1):314. doi: 10.1186/s12864-022-08511-x.