
ABSTRACT

Ischemic stroke and Alzheimer’s disease (AD) are representative geriatric diseases with 
a rapidly increasing prevalence worldwide. Recent studies have reported an association 
between ischemic stroke neuropathology and AD neuropathology. Ischemic stroke shares 
some similar characteristics with AD, such as glia activation-induced neuroinflammation, 
amyloid beta accumulation, and neuronal cell loss, as well as some common risk factors 
with AD progression. Although there are considerable similarities in neuropathology 
between ischemic stroke and AD, no studies have ever compared specific genetic changes 
of brain cortex between ischemic stroke and AD. Therefore, in this study, I compared the 
cerebral cortex transcriptome profile of 5xFAD mice, an AD mouse model, with those of 
middle cerebral artery occlusion (MCAO) mice, an ischemic stroke mouse model. The 
data showed that the expression of many genes with important functional implications in 
MCAO mouse brain cortex were related to synaptic dysfunction and neuronal cell death 
in 5xFAD mouse model. In addition, changes in various protein-coding RNAs involved in 
synaptic plasticity, amyloid beta accumulation, neurogenesis, neuronal differentiation, glial 
activation, inflammation and neurite outgrowth were observed. The findings could serve as 
an important basis for further studies to elucidate the pathophysiology of AD in patients with 
ischemic stroke.
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INTRODUCTION

Ischemic stroke is a leading cause of global mortality [1] and can also result in disability and 
reduced quality of life [2]. It is characterized by brain infarction caused by the occlusion 
of cerebral blood flow [3,4] and is also correlated with the onset of dementia such as 
Alzheimer’s disease (AD) [5,6].

AD has several hallmarks, including excessive deposition of amyloid beta, neuronal 
intracellular neurofibrillary tangles, and neuronal loss in cognition related brain regions such 
as the hippocampus and cortex [7,8].
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The incidences of stoke and AD are simultaneously increasing internationally [9,10]. A recent 
meta-analysis identified the concurrent increase in the number of patients with stroke and 
AD [11]. A previous study demonstrated that over 80% of patients with AD experienced 
ischemic stroke caused by amyloid deposition in cerebral blood vessels [12]. Furthermore, 
a study demonstrated the high risk of AD onset in an ischemic stroke model with cerebral 
amyloid angiopathy [13].

Considering previous reports, dementia appears to share common risk factors with stroke 
[14] and leads to increased risks for death following ischemic stroke [15-18].

A recent clinical study reported that mortality after ischemic stroke increased with the onset 
of AD [19]. Several studies have reported that stroke can cause dementia accompanied by 
cognitive impairment, neuronal cell damage, mitochondrial dysfunction, and glia activation 
[20-25]. Although there is much evidence on the relationship between ischemic stroke and 
AD, the genetic mechanisms shared between 2 diseases are not completely understood. 
In this study, I compared the cerebral cortex transcriptomes from middle cerebral artery 
occlusion (MCAO) mice, a mouse model of ischemic stroke [26], with those from 5xFAD 
mice, an AD mouse model [27]. I identified that the function of commonly altered RNAs 
was associated with neuronal cell death, glia inflammation, and synaptic dysfunction in AD 
and ischemic stroke brains. These findings are thought to provide important basic data for 
broadening the understanding of the AD-like neuropathology in ischemic stroke patients by 
understanding the effect of RNA commonly expressed in both diseases.

MATERIALS AND METHODS

Data used to analyze the transcriptome of 5xFAD and MCAO mouse models
To compare the common transcriptomic profile between MCAO mouse brain cortex and 
5xFAD mouse brain cortex, I obtained RNA sequencing data from the cerebral cortex of 
8-month-old male 5xFAD mice from the Gene Expression Omnibus (GEO) database with the 
accession number of GSE168137 [28]. I also obtained RNA sequencing data from the cerebral 
cortex of 3-month-old male ischemic stroke MCAO mice (GSE137482) [1].

Analysis of RNA sequencing data
The RNA sequencing data obtained from the ischemic stroke and AD models were screened 
for low-quality sequencing reads using Trimmomatic [29] (Figure 1A). The trimmed 
sequences were matched to the mouse genome (mm10) using the spliced transcript 
alignment to a reference aligner [30]. The Cuffnorm value was used to examine normalized 
values of fragments per kilobase of transcript per million mapped reads (FPKM) based on 
the GENCODE annotation (Release M17, GRCm38.p6 [31]) (Figure 1A). Transcripts with 
an average FPKM value of < 1 or transcripts not detected in any sample were excluded from 
additional analysis (Figure 1A). A t-test was used to sort transcripts with a significantly 
different expression between MCAO and 5xFAD groups. The commonly altered mRNAs 
between the cortex of MCAO and 5xFAD groups were selected for further functional analysis.

Functional analysis of mRNAs
For the functional analysis, significant expression changes based on a p value of ≤ 0.05 were 
selected in the MCAO and 5xFAD groups. Among them, the commonly changed genes with 
the same direction in the MCAO and 5xFAD groups were chosen. This filtering resulted in 
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Figure 1. Analysis of transcriptomic data from the brain cortex of MCAO and 5xFAD mouse models. (A) Analysis of transcriptome data. Volcano plots of (B) the 
5xFAD group and (C) the MCAO group. The X-axis represents the log2-transformed fold change in both the groups, and the Y-axis represents the −log10(p value) 
value. Red dots show significantly altered genes. 
MCAO, middle cerebral artery occlusion; STAR, spliced transcript alignment to a reference; FPKM, fragments per kilobase of transcript per million mapped reads.
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231 significantly increased genes and 128 significantly decreased genes in both groups. These 
359 genes as common genes in both groups were used for the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis and gene ontology (GO) analysis with the Molecular 
Signatures Database [32]. For the same group of genes, functional annotation clustering 
was conducted using the Database for Annotation, Visualization and Integrated Discovery 
(DAVID) clustering tool [33].

RESULTS

The transcriptome data from 4 5xFAD model brain cortex and 6 MCAO brain cortex were 
analyzed. For the RNA sequencing analysis of cerebral cortex from 8-month-old 5xFAD mice, 
data from the publicly available dataset of the GEO database (GSE168137) were analyzed. For 
the RNA sequencing analysis of cerebral cortex from 3-month-old MCAO mice, the data from 
the publicly available dataset of the GEO database (GSE137482) were analyzed.

After analyzing and comparing the 2 group’s RNA sequencing data (Figure 1A, see Materials 
and Methods), the genes with high expression with significant fold change in each group 
were sorted and displayed using volcano plot graphs (Figure 1B and C).

I sorted 864 significant genes in 5xFAD mouse brain cortex and 5061 significant genes in 
MCAO mouse brain cortex with a p value of ≤ 0.05. In addition, there were 401 significant 
genes with a p value ≤ 0.05 shared between groups.

As depicted in the volcano plot of the 5xFAD model (Figure 1B), the expression levels 
of Mir6340, Abi3bp, Tuba1c, Cmtm7, Gm10801, Snord4a, and Gm27675 were significantly 
distinguished in 5xFAD mouse brain cortex compared with those in control brain cortex 
(Figure 1B).

In the volcano plot of the MCAO model (Figure 1C), Epha4, Pcna, Itgam, RP23-49h16.1, 
AF357425, Fam64a, Nusap1, Ccl3, Pbk, Arg1, and Cd3000lf were significantly distinguished in their 
expression when comparing MCAO mouse brain cortex with control brain cortex (Figure 1C).

To identify commonly altered genes shared by 5xFAD and MCAO mouse groups, genes with a 
pvalue of ≤ 0.05 in both 5xFAD and MCAO mouse brain cortex were reselected.

In addition, 231 increased genes and 128 decreased genes were identified in both groups 
(Supplementary Table 1). Figure 2A shows the 20 most commonly increased genes: Clec7a, 
Cst7, Ccl3, Ccl6, Ccl4, Wfdc17, Ifi2712a, Bcl2a1b, Lyz2, Ch25h, Milr1, Cd52, Trem2, Lat2, Tyrobp, Cd48, 
Prkcd, Arl11, Hcst, and Slamf9. Figure 2B shows the 20 most commonly decreased genes: Gnb1, 
Dnajc27, Ttc3, Achcyl1, Scamps, Vamp2, Dffa, Slc9a6, Tspyl1, Golga7b, Camk2g, Cab39, Ogt, Cstf2t, 
Aco2, Plk2, Ap3m2, Cdkn2aip, Tox, and Arhgef3.

To verify related cellular pathways associated with commonly changed genes in the brain 
cortex of the 5xFAD and MCAO models, the KEGG pathway was analyzed using the MsigDB 
program (Figure 3A). KEGG analysis data for commonly increased genes showed a significant 
enrichment in the molecular signaling of lysosome, natural killer cell-mediated cytotoxicity, 
chemokine signaling, antigen processing, cytokine interaction, toll-like receptor signaling, 
IgA production, and B-cell receptor signaling in the 5xFAD and MCAO groups (Figure 3A). 
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Next, I performed GO analysis for genes commonly increased in both groups (The Gene 
Ontology Consortium, 2017). The significantly enriched terms included those related to 
immune response, cell activation, response to biotic stimulus, response to external stimulus, 
defense response, leukocyte activation, and defense response to other organisms (Figure 3B).  
In addition, I performed a functional clustering analysis of the increased genes using the 
DAVID functional annotation tool [33] (Figure 3C). Highly enriched clusters were linked 
to synapses, cell junctions, postsynaptic membranes, GTPase activity, cell response of 
angiotensin, and positive regulation of superoxide anion generation for the commonly 
changed genes in 5xFAD and MACO mouse brain cortex (Figure 3C).

Based on the analyzed data, common characteristics were found between the genes 
expressed in the cerebral cortex of AD and the genes in the ischemic stroke mouse model.
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Figure 2. Selected genes with significant expression changes in the mouse brain cortex of MCAO and 5xFAD models. Common genes with a significant expression 
change in both MCAO and 5xFAD mouse cerebral cortex. Graphs for 20 most commonly (A) increased genes and (B) decreased genes. 
MCAO, middle cerebral artery occlusion.
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DISCUSSION

In this study, I analyzed genes commonly expressed in 5xFAD and MCAO mouse cerebral 
cortex. Volcano plot shows significant gene expression in 5xFAD and MCAO mouse cerebral 
cortex. It is found that the expression of the Tuba1c gene, which promotes cell proliferation 
and regulates immune cell infiltration under inflammation conditions [34,35], was 
significantly distinguished in 5xFAD brain cortex. In addition, the expression of Cmtm7, 
which is associated with immune B-cell antigen receptor regulation [36] and increased risk 
of obesity [37], was significantly distinguished in 5xFAD brain cortex. These findings suggest 
that the cerebral cortex in 5xFAD mice may accelerate immune cell infiltration and activate 
inflammatory responses.

In the MCAO mouse brain cortex, enhanced expression of Epha4, which regulates neuronal 
differentiation and promotes neurogenesis by interacting with platelet-derived growth 
factor receptor B was identified [38]. Expression of Nusap1, which is a microtubule-
associated protein related to mitosis and activates glioblastoma [39], was also significantly 
distinguished in the MCAO mouse brain cortex. In addition, the expression of Ccl3, which is 
a major immune and neurogenesis regulator and plays a role in neuroendocrine function, 
activates migration of leukocyte, and impairs synaptic plasticity, leading to memory loss 
[40,41], was significantly distinguished in the MCAO mouse brain cortex.

In the MCAO mouse model, expression of Cd3000lf, which leads to microglia activation and 
severe neuroinflammation [42], was significantly distinguished. Considering these findings, 
it is thought that the MCAO cerebral cortex had several features such as microglia activation, 
neuroinflammation, immune cell infiltration, impaired neurogenesis, and synaptic dysfunction.

MCAO cerebral cortex shows alterations shared with AD pathology-related genes (Figure 2). 
The increased expression of Clec7a and Cst7 in the MCAO brain cortex is also routinely found in 
the microglia of AD brain tissue [43,44]. The increased expression of chemokine Ccl6 and Ccl4 
observed in the MCAO mouse brain cortex have also been identified in activated microglia and 
astrocytes in various neurological diseases such as ischemic stroke, AD, and multiple sclerosis 
[45-47]. Furthermore, increased Wfdc17 gene expression in MCAO and 5xFAD mouse cerebral 
cortex implicates immune cell infiltration and immune cell activation [48].

The increased cholesterol 25-hydroxylase expression observed in MCAO mouse brain cortex 
is also related to impaired cholesterol metabolism in AD [49]. The Trem2 gene, which is 
related to microglia activation under amyloid beta toxicity in AD brain [50] was increased in 
the MCAO and AD mouse brain cortex in this study. Increased Slamf9 gene expression in the 
MCAO mouse brain cortex also regulates lymphocytic activation in AD brain [51].

The expression of Scamps gene, which controls synaptic plasticity [52], was decreased in 
MCAO and AD mouse brain cortex. Additionally, the expression of Vamp2 gene, which 
is reduced in the hippocampus region and entorhinal cortex and is related to memory 
formation [53], was reduced in both MCAO and AD mouse brain cortex.

Ogt gene, which regulates postsynaptic plasticity, is reduced in AD brain tissue [54,55]. 
MCAO and 5xFAD brain cortex showed decreased expression of Ogt gene. Decreased 
Aco2 gene expression in MCAO brain cortex is related to AD and cognitive decline with 
mitochondrial dysfunction [56].
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MCAO ischemic stroke brain cortical tissue appears to share characteristics with AD 
pathology, such as cognitive decline, synaptic dysfunction, lymphocyte activation, glia 
activation, poor cholesterol metabolism, and inflammation.

KEGG and GO data from this study showed high enrichment of genes related to immune and 
inflammatory responses, as well as cytokine interaction, in both 5xFAD and MCAO mouse 
brain cortical tissues. DAVID functional annotation data also suggested a high relationship 
with inflammatory response, synaptic plasticity, and Rho GTPase, in both 5xFAD and MCAO 
mouse brain cortical tissues.

Several studies have mentioned that AD brain tissue shows greater activation of immune 
cells, such as natural killer cells [57,58], and elevated leukocyte infiltration and trafficking 
[59], leading to memory loss [60]. Synaptic loss is a primary feature of AD [61,62] and is 
related to postsynaptic density loss in AD brains [63].

Furthermore, the activation of Rho GTPase is observed in AD brains [64] and is related to 
synaptic stability maintenance and neuronal cell death [65].

Considering previous literature and the findings of this study, I conclude that changes in the 
cerebral cortex caused by ischemic stroke and AD both result in increased immune response, 
glia activation, neuronal cell death, inflammation, and Rho GTPase; suppressed synaptic 
plasticity, neurogenesis, and cholesterol homeostasis; and impaired cognitive function. This 
suggests that further studies on AD-like cognitive decline after ischemic stroke are necessary 
for determining the best treatment for memory loss in patients with ischemic stroke.
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