DOI QR코드

DOI QR Code

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen (College of Forestry, Southwest Forestry University) ;
  • Zhang Zhang (College of Forestry, Southwest Forestry University) ;
  • Yi Wang (Yunnan Key Laboratory of Forest Plant Cultivation, Development and Utilization, Yunnan Academy of Forestry and Grassland) ;
  • Xiao-Long Yuan (Yunnan Key Laboratory of Forest Plant Cultivation, Development and Utilization, Yunnan Academy of Forestry and Grassland) ;
  • Juan Wang (Institute of Green Development, Southwest Forestry University) ;
  • Yu-Ming Yang (Institute of Green Development, Southwest Forestry University) ;
  • Yuan Zheng (College of Forestry, Southwest Forestry University)
  • Received : 2022.11.07
  • Accepted : 2023.01.27
  • Published : 2023.02.28

Abstract

Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

Keywords

Acknowledgement

The authors are grateful for the support of the National Natural Science Foundation of China [No. 32160736, 31860177]; Major Project of the Agricultural Basic Research Program in Yunnan Province [202101BD070001-020]; General Project of the Basic Research Program in Yunnan Province [202101AT070218, 202101AT070044]; the Reserve Talents for Young and Middle-aged Academic and Technical Leaders of the Yunnan Province [202205AC160044]; Yunnan Key Laboratory for Fungal Diversity and Green Development [E03A311261-3].

References

  1. Zhang BB, Guan YY, Hu PF, et al. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol. 2019;39(4):541-554. https://doi.org/10.1080/07388551.2019.1577798
  2. Chen CY, Chien SC, Tsao NW, et al. Metabolite Profiling and comparison of bioactivity in Antrodia cinnamomea and Antrodia salmonea fruiting bodies. Planta Med. 2016;82(3):244-249.
  3. Cha WS, Ding JL, Choi DB. Comparative evaluation of antioxidant, nitrite scavenging, and antitumor effects of Antrodia camphorata extract. Biotechnol Bioproc E. 2009;14(2):232-237. https://doi.org/10.1007/s12257-008-0291-1
  4. Mau JL, Huang PN, Huang SJ, et al. Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chem. 2004;86(1):25-31. https://doi.org/10.1016/j.foodchem.2003.08.025
  5. Geethangili M, Tzeng YM. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid Based Complement Alternative Med. 2011;2011:1-17. https://doi.org/10.1093/ecam/nep108
  6. Ganesan N, Baskaran R, Velmurugan BK, et al. Antrodia cinnamomea-an updated minireview of its bioactive components and biological activity. J Food Biochem. 2019;43(8):e12936.
  7. Yeh CT, Rao YK, Yao CJ, et al. Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human Colon cancer cells. Cancer Lett. 2009;285(1):73-79. https://doi.org/10.1016/j.canlet.2009.05.002
  8. Toyomasu T. Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci Biotechnol Biochem. 2008;72(5):1168-1175. https://doi.org/10.1271/bbb.80044
  9. Hsiao G, Shen MY, Lin KH, et al. Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem. 2003;51(11):3302-3308. https://doi.org/10.1021/jf021159t
  10. Joshi RA. Antrodia camphorata with potential anticancerous activities: a review. Journal of Medicinal Plants Studies. 2017;5(1):284-291.
  11. Qiao X, Wang Q, Ji S, et al. Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. J Pharm Biomed Anal. 2015;111:266-276. https://doi.org/10.1016/j.jpba.2015.04.010
  12. Zhang Z, Wang Y, Yuan XL, et al. Effects of culture mechanism of Cinnamomum kanehirae and C. camphora on the expression of genes related to terpene biosynthesis in Antrodia cinnamomea. Mycobiology. 2022;50(2):121-131. https://doi.org/10.1080/12298093.2022.2059156
  13. Wang LP, Liang J, Xie X, et al. Direct formation of the sesquiterpeonid ether liguloxide by a terpene synthase in senecio scandens. Plant Mol Biol. 2021;105(1-2):55-64. https://doi.org/10.1007/s11103-020-01068-x
  14. Mitsuhashi T, Abe I. Chimeric terpene synthases possessing both terpene cyclization and prenyltransfer activities. Chem Bio Chem. 2018;19(11):1106-1114. https://doi.org/10.1002/cbic.201800120
  15. Lu MYJ, Fan WL, Wang WF, et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc Natl Acad Sci U S A. 2014;111(44):E4743-E4752. https://doi.org/10.1073/pnas.1417570111
  16. Liu CJ, Chiang CC, Chiang BH. The elicited two-stage submerged cultivation of Antrodia cinnamonmea for enhancing triterpenoids production and antitumor activity. Biochem Eng J. 2012;64:48-54. https://doi.org/10.1016/j.bej.2012.03.003
  17. Ma TW, Lai Y, Yang FC. Enhanced production of triterpenoid in submerged cultures of Antrodia cinnamomea with the addition of citrus peel extract. Bioprocess Biosyst Eng. 2014;37(11):2251-2261. https://doi.org/10.1007/s00449-014-1203-8
  18. Liu H, Jia W, Zhang J, et al. GC-MS and GC-Olfactometry analysis of aroma compounds extracted from culture fluids of Antrodia camphorate. World J Microbiol Biotechnol. 2008;24(8):1599-1602. https://doi.org/10.1007/s11274-007-9614-1
  19. Wang X, Jia LH, Wang MD, et al. The complete mitochondrial genome of medicinal fungus Taiwanofungus camphoratus reveals gene rearrangements and intron dynamics of polyporales. Sci Rep. 2020;10(1):16500.
  20. Yang FC, Yang YH, Lu HC. Enhanced antioxidant and antitumor activities of Antrodia cinnamomea cultured with cereal substrates in solid state fermentation. Biochem Eng J. 2013;78:108-113. https://doi.org/10.1016/j.bej.2013.04.020
  21. Lin LT, Tai CJ, Su CH, et al. The Ethanolic extract of Taiwanofungus camphoratus (Antrodia camphorata) induces cell cycle arrest and enhances cytotoxicity of cisplatin and doxorubicin on human hepatocellular carcinoma cells. Biomed Res Int. 2015;2015:415269.
  22. Lin TY, Chen CY, Chien SC, et al. Metabolite profiles for Antrodia cinnamomea fruiting bodies harvested at different culture ages and from different wood substrates. J Agric Food Chem. 2011;59(14):7626-7635. https://doi.org/10.1021/jf201632w
  23. Bastos DZL, Pimentel IC, De Jesus DA, et al. Biotransformation of betulinic and betulonic acids by fungi. Phytochemistry. 2007;68(6):834-839. https://doi.org/10.1016/j.phytochem.2006.12.007
  24. Ohm RA, De Jong JF, Lugones LG, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28(9):957-963. https://doi.org/10.1038/nbt.1643
  25. Riley R, Salamov AA, Brown DW, et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A. 2014;111(27):9923-9928. https://doi.org/10.1073/pnas.1400592111
  26. Castanera R, Lopez-Varas L, Borgognone A, et al. Transposable elements versus the fungalgenome: impact on whole-genome architecture and transcriptional profiles. PLoS Genet. 2016;12(6):el006108.
  27. Chen SL, Xu J, Liu C, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3(3):913.
  28. Chen LF, Gong YH, Cai YL, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (shiitake) reveals insights into lignocellulose degradation. PLoS One. 2016;11(8):e0160336.
  29. Wang W, Liu F, Jiang YJ, et al. The multigene family of fungal laccases and their expression in the white rot basidiomycete Flammulina velutipes. Gene. 2015;563(2):142-149. https://doi.org/10.1016/j.gene.2015.03.020
  30. Yu GJ, Wang M, Huang J, et al. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One. 2012;7(8):e44031.
  31. Huang Y, Wu XQ, Jian D, et al. De novo transcriptome analysis of a medicinal fungi Phellinus linteus and identification of SSR markers. Biotechnol Biotechnol Equip. 2015;29(2):395-403. https://doi.org/10.1080/13102818.2015.1008228
  32. Plaza DF, Lin CW, van der Velden NSJ, et al. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics. 2014;15(1):492.
  33. Li ZW, Kuang Y, Tang SN, et al. Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver injury in mice. J Ethnopharmacol. 2017;206:31-39. https://doi.org/10.1016/j.jep.2017.05.020
  34. Meng LH, Luo BB, Yang Y, et al. Addition of vegetable oil to improve triterpenoids production in liquid fermentation of medicinal fungus Antrodia cinnamomea. JoF. 2021;7(11):926.
  35. Hu YD, Zhang H, Lu RQ, et al. Enabling the biosynthesis of antroquinonol in submerged fermentation of Antrodia camphorate. Biochem Eng J. 2014;91:157-162. https://doi.org/10.1016/j.bej.2014.08.012
  36. Lu MC, El-Shazly M, Wu TY, et al. Recent research and development of Antrodia cinnamomea. Pharmacol Ther. 2013;139(2):124-156. https://doi.org/10.1016/j.pharmthera.2013.04.001
  37. Lee SY, Kim M, Kim SH, et al. Transcriptomic analysis of the white rot fungus Polyporus brumalis provides insight into sesquiterpene biosynthesis. Microbiol Res. 2016;182:141-149. https://doi.org/10.1016/j.micres.2015.10.008
  38. Zou L, Sun TT, Li TL, et al. De novo transcriptome analysis of inonotus baumii by RNA-seq. J Biosci Bioeng. 2016;121(4):380-384. https://doi.org/10.1016/j.jbiosc.2015.09.004
  39. Haralampidis K, Trojanowska M, Osbourn AE. Biosynthesis of triterpenoid saponins in plants. Advances in Biochemical Engineering. 2002;75(2):31-49. https://doi.org/10.1007/3-540-44604-4_2
  40. Lee MH, Jeong JH, Seo JW, et al. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol. 2004;45(8):976-984. https://doi.org/10.1093/pcp/pch126
  41. Kim TD, Han JY, Huh GH, et al. Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol. 2011;52(1):125-137. https://doi.org/10.1093/pcp/pcq179
  42. Fradj N, Santos KCGD, Montigny ND, et al. RNA-Seq de novo assembly and differential transcriptome analysis of chaga (Inonotus obliquus) cultured with different betulin sources and the regulation of genes involved in terpenoid biosynthesis. IJMS. 2019;20(18):4334.