• 제목/요약/키워드: Transcription Factor

검색결과 1,948건 처리시간 0.032초

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • 제59권9호
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface

  • Jeong, Moon-Jin;Lim, Do-Seon;Heo, Kyungwon;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제20권4호
    • /
    • pp.221-229
    • /
    • 2020
  • Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of peri-implantitis (PI) in Ti-based dental implants. Methods: A disk diffusion test was conducted to confirm the antimicrobial activity of RA against oral microorganisms. In order to confirm the anti-inflammatory effects of RA, inflammatory conditions were induced with 100 ng/ml of LPS in MC3T3-E1 osteoblastic cells on the Ti surface treated with or without 14 ㎍/ml of RA. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface was confirmed using an NO assay kit and PGE2 enzyme-linked immunosorbent assay kit. Reverse transcription polymerase chain reaction and western blot analysis were performed to confirm the expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in total RNA and protein. Results: RA showed weak antimicrobial effects against Streptococcus mutans and Escherichia coli, but no antimicrobial activity against the bacteria Aggregatibacter actinomycetemcomitans and the fungus Candida albicans. RA reduced the production of pro-inflammatory mediators, NO and PGE2, and proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface at the protein and mRNA levels. Conclusion: RA not only has anti-oral microbial activity, but also anti-inflammatory effects in LPS-stimulated MC3T3-E1 osteoblasts on the Ti surface, therefore, it can be used as a safe functional substance derived from plants for the prevention and control of PI for successful Ti-based implants.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

고지방 식이 유도 고지혈증에 대한 ChondroT의 혈액 내 지질대사에 미치는 영향 (Observational Study of ChondroT's Improvement of Blood Metabolites in High-fat Diet-induced Hyperlipidemia)

  • 윤찬석;김도형;나창수;정지원;김지훈;김선길;최지민;김선종
    • 한방재활의학과학회지
    • /
    • 제31권1호
    • /
    • pp.81-93
    • /
    • 2021
  • Objectives The objective of the study was to investigate effects of ChondroT by improvement of blood metabolites in high-fat diet (HFD)-induced hyperlipidemia rat model. Methods Sprague-Dawley rats were randomly assigned to intact, control, simvastatin, and CT100, CT200 and CT400 (each n=6). For observing cholesterol change, animals were first fed high fat diet for 5 weeks and then high fat diet and drugs for 3 weeks. At the end of the experiment, total cholesterol, triglyceride, high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) were analyzed by obtained blood collection. Further, amplified leptin, peroxisome proliferator activated receptor (PPAR) and adiponectin DNA were observed by reverse transcription polymerase chain reaction analysis. Results Observing the effect of ChondroT on the change of lipid metabolism in hyperlipidemia-induced rats, triglyceride and total cholesterol were significantly decreased in SV100 group, HDL-C was significantly increased in SV100, CT100 and CT200 groups, and LDL-C was significantly decreased in SV100, CT100, CT200 and CT400 groups, compared to the control group. Leptin level in hyperlipidemia-induced rats was significantly decreased in CT100 and CT200 groups, compared to the control group. The effect of ChondroT on adiponectin level in hyperlipidemia-induced rats was significantly increased in SV100, CT100 and CT200 groups. PPAR level in hyperlipidemia-induced rats was significantly decreased in SV100, CT200 and CT400 groups. Platelete activating factor level in hyperlipidemia-induced rats was significantly decreased in CT100 and CT200 groups. Conclusions Based on these results, it could be suggested that ChondroT has certain effects of improving blood metabolites in HFD-induced hyperlipidemia.

B16/F10 흑색종 세포에서 S-Adenosylhomocysteine Hydrolase 의 선택적 저해제 3-Deazaneplanocin A 에 의한 (Melanogenesis Promotion by 3-Deazaneplanocin A, a Specific Inhibitor of S-Adenosylhomocysteine Hydrolase, in B16/F10 Melanoma Cells)

  • 황윤정;부용출
    • 대한화장품학회지
    • /
    • 제47권2호
    • /
    • pp.107-121
    • /
    • 2021
  • 백색증이나 백반증에서 관찰되는 피부 저색소침착은 유전적 요인, 후성유전적 요인 및 기타 요인에 의해 멜라닌 합성이 감소할 때 발생한다. 세포에서 멜라닌 합성을 촉진 할 수 있는 약물 후보를 확인하기 위해 141개의 세포 투과성 저분자 약물로 구성된 후성유전적 조절제 라이브러리를 스크리닝했다. B16/F10 쥐 흑색종 세포를 0.1 𝜇M에서 각 약물로 처리하고 멜라닌 합성 및 세포 생존력을 모니터링했다. 그 결과, (-)-네플라노신 A, 3-디아자네플라노신 A (DZNep) 및 DZNep 염산염이 세포 독성을 일으키지 않고 멜라닌 합성을 증가시키는 것으로 나타났다. 이 세 가지 구조적으로 관련된 약물은 세포 멜라닌 합성 및 세포 생존력에 유사한 용량 의존적 효과를 나타내었기 때문에 DZNep을 추가 실험을 위한 대표 약물로 선택하였다. DZNep는 세포내 멜라닌 함량과 티로시나제(TYR) 활성을 증가 시켰다. DZNep은 또한 mRNA와 단백질 수준에서 TYR, 티로시나제 관련 단백질 1 (TYRP1) 및 도파크롬 토토머라제 (DCT)의 발현을 유도했다. DZNep는 또한 멜라닌 합성의 주요 조절자인 소안구증 관련 전사 인자(MITF)의 mRNA와 단백질 발현을 유도했다. DZNep은 S-아데노실 호모시스테인 가수분해효소의 선택적 억제제이며 히스톤 메틸화효소를 저해하는 S-아데노실 호모시스테인의 세포내 축적을 유발하였다. 이 연구는 특정 세포 상황에서 S-아데노실 호모시스테인 가수분해효소를 표적함으로써 멜라닌 생성이 조절될 수 있음을 시사한다.

Prevalence of hepatitis E virus antibodies in cattle in Burkina Faso associated with swine mixed farming

  • Tialla, Dieudonne;Cisse, Assana;Ouedraogo, Georges Anicet;Hubschen, Judith M.;Tarnagda, Zekiba;Snoeck, Chantal J.
    • Journal of Veterinary Science
    • /
    • 제23권3호
    • /
    • pp.33.1-33.10
    • /
    • 2022
  • Background: Endemic circulation of human-specific hepatitis E virus (HEV) genotypes 1 and 2 may occult the importance of sporadic zoonotic HEV transmissions in Africa. Increasing numbers of studies reporting anti-HEV antibodies in cattle and the discovery of infectious HEV in cow milk has raised public health concern, but cattle exposure has seldom been investigated in Africa. Objectives: This study aimed at investigating the role of cows in the epidemiology of HEV in Burkina Faso and farmers habits in terms of dairy product consumption as a prerequisite to estimate the risk of transmission to humans. Methods: Sera from 475 cattle and 192 pigs were screened for the presence of anti-HEV antibodies while HEV RNA in swine stools was detected by reverse transcription polymerase chain reaction. Data on mixed farming, dairy product consumption and selling habits were gathered through questionnaires. Results: The overall seroprevalence in cattle was 5.1% and herd seroprevalence reached 32.4% (11/34). Herd seropositivity was not associated with husbandry practice or presence of rabbits on the farms. However, herd seropositivity was associated with on-site presence of pigs, 80.7% of which had anti-HEV antibodies. The majority of farmers reported to preferentially consume raw milk based dairy products. Conclusions: Concomitant presence of pigs on cattle farms constitutes a risk factor for HEV exposure of cattle. However, the risk of HEV infections associated with raw cow dairy product consumption is currently considered as low.

Whitening and inhibiting NF-κB-mediated inflammation properties of the biotransformed green ginseng berry of new cultivar K1, ginsenoside Rg2 enriched, on B16 and LPS-stimulated RAW 264.7 cells

  • Xu, Xing Yue;Yi, Eun Seob;Kang, Chang Ho;Liu, Ying;Lee, Yeong-Geun;Choi, Han Sol;Jang, Hyun Bin;Huo, Yue;Baek, Nam-In;Yang, Deok Chun;Kim, Yeon-Ju
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.631-641
    • /
    • 2021
  • Background: Main bioactive constituents and pharmacological functions of ripened red ginseng berry (Panax ginseng Meyer) have been frequently reported. Yet, the research gap targeting the beneficial activities of transformed green ginseng berries has not reported elsewhere. Methods: Ginsenosides of new green berry cultivar K-1 (GK-1) were identified by HPLC-QTOF/MS. Ginsenosides bioconversion in GK-1 by bgp1 enzyme was confirmed with HPLC and TLC. Then, mechanisms of GK-1 and β-glucosidase (bgp1) biotransformed GK-1 (BGK-1) were determined by Quantitative Reverse Transcription-Polymerase Chain Reaction and Western blot. Results: GK-1 possesses highest ginsenosides especially ginsenoside-Re amongst seven ginseng cultivars including (Chunpoong, Huangsuk, Kumpoong, K-1, Honkaejong, Gopoong, and Yunpoong). Ginseng root's biomass is not affected with the harvest of GK-1 at 3 weeks after flowering period. Then, Re is bioconverted into a promising pharmaceutical effect of Rg2 via bgp1. According to the results of cell assays, BGK-1 shows decrease of tyrosinase and melanin content in α-melanocyte-stimulating hormone challenged-murine melanoma B16 cells. BGK-1 which is comparatively more effective than GK-1 extract shows significant suppression of the nuclear factor (NF)-κB activation and inflammatory target genes, in LPS-stimulated RAW 264.7 cells. Conclusion: These results reported effective whitening and anti-inflammatory of BGK-1 as compared to GK-1.

Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line

  • Xusheng, Dong;Chen, Liu;Jialin, Miao;Xueyan, Lin;Yun, Wang;Zhonghua, Wang;Qiuling, Hou
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.922-936
    • /
    • 2022
  • 5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.

OMC-2010 구성약재가 마우스의 비장세포 cytokine 생성에 미치는 영향 (Effects of OMC-2010 constituents on cytokine productions in mouse spleen cells)

  • 배기상;김현식;박경철;최선복;조일주;이창혁;서상완;김종진;신용국;김민선;박규환;송호준;박성주
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.49-54
    • /
    • 2012
  • Objective : We recently reported that OMC-2010 has an immuno-modulatory effects via inhibiting tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-5. However, we did not find out which constituents play an important role in immuno-modulatory effect of OMC-2010. Thus, this study was performed to estimate the effects of constituents of OMC-2010 on cytokine production in mouse spleen cells, then ultimately reach to find out effective constituents regulating splenic cytokine production. Methods : Mouse spleen cells were pre-treated with water and ethanol extract of constituents of OMC-2010 such as Rehmannia glutinosa (RG), Pinellia ternata (PT), Citrus unshiu Markovich (CUM), Glycyrrhiza uralensis (GU), Platycodon grandiflorum (PG), Schisandra chinensis (SC). After 1 h, the cells were stimulated with lipopolysaccharide (LPS, 1 ${\mu}g/ml$) for 48 h. Then the cells were harvested for real-time reverse transcription polymerase chain reaction to detect cytokine productions. Results : The water extract of RG extract significantly inhibited the LPS-induced inTNF-${\alpha}$ and IL-5 mRNA expressions, but the water extract of PT, CUM, GU, PG, and SC did not. The ethanol extract of RG, PT, and SC significantly inhibited the LPS-induced TNF-${\alpha}$, and IL-5 mRNA expressions, but the ethanol extract of CUM, GU, and PG did not. Conclusions : Theses results could suggest that the water extract of RG and the ethanol extract of RG, PT, and SC inhibited the expression of TNF-${\alpha}$ and IL-5, which means that the possible candidate of OMC-2010 water extract's action might be RG, and ethanol extract's action might be RG, PR, and SC.