Browse > Article
http://dx.doi.org/10.5187/jast.2022.e50

Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line  

Xusheng, Dong (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Chen, Liu (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Jialin, Miao (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Xueyan, Lin (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Yun, Wang (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Zhonghua, Wang (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Qiuling, Hou (Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University)
Publication Information
Journal of Animal Science and Technology / v.64, no.5, 2022 , pp. 922-936 More about this Journal
Abstract
5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.
Keywords
5-Hydroxytryptamine; Cell viability; Mammary alveolar cell-T (MAC-T); Dairy cow; Prolactin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Collier RJ, Hernandez LL, Horseman ND. Serotonin as a homeostatic regulator of lactation. Domest Anim Endocrinol. 2012;43:161-70. https://doi.org/10.1016/j.domaniend.2012.03.006   DOI
2 Suarez-Trujillo A, Arguello A, Rivero MA, Capote J, Castro N. Short communication: differences in distribution of serotonin receptor subtypes in the mammary gland of sheep, goats, and cows during lactation and involution. J Dairy Sci. 2019;102:2703-7. https://doi.org/10.3168/jds.2018-15328   DOI
3 Weaver SR, Hernandez LL. Autocrine-paracrine regulation of the mammary gland. J Dairy Sci. 2016;99:842-53. https://doi.org/10.3168/jds.2015-9828   DOI
4 Maes M, D'Hondt P, Martin M, Claes M, Schotte C, Vandewoude M, et al. L-5-hydroxytryptophan stimulated cortisol escape from dexamethasone suppression in melancholic patients. Acta Psychiatr Scand. 1991;83:302-6. https://doi.org/10.1111/j.1600-0447.1991.tb05544.x   DOI
5 Hernandez LL, Stiening CM, Wheelock JB, Baumgard LH, Parkhurst AM, Collier RJ. Evaluation of serotonin as a feedback inhibitor of lactation in the bovine. J Dairy Sci. 2008;91:1834-44. https://doi.org/10.3168/jds.2007-0766   DOI
6 Laporta J, Moore SAE, Weaver SR, Cronick CM, Olsen M, Prichard AP, et al. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows. J Endocrinol. 2015;226:43-55. https://doi.org/10.1530/JOE-14-0693   DOI
7 Moore SAE, Laporta J, Crenshaw TD, Hernandez LL. Patterns of circulating serotonin and related metabolites in multiparous dairy cows in the peripartum period. J Dairy Sci. 2015;98:3754-65. https://doi.org/10.3168/jds.2014-8841   DOI
8 Hernandez-Castellano LE, Hernandez LL, Weaver S, Bruckmaier RM. Increased serum serotonin improves parturient calcium homeostasis in dairy cows. J Dairy Sci. 2017;100:1580-7. https://doi.org/10.3168/jds.2016-11638   DOI
9 Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: an update. Dev Biol. 2019;445:145-55. https://doi.org/10.1016/j.ydbio.2018.11.002   DOI
10 Zhao X, Ponchon B, Lanctot S, Lacasse P. Invited review: accelerating mammary gland involution after drying-off in dairy cattle. J Dairy Sci. 2019;102:6701-17. https://doi.org/10.3168/jds.2019-16377   DOI
11 Zamani A, Qu Z. Serotonin activates angiogenic phosphorylation signaling in human endothelial cells. FEBS Lett. 2012;586:2360-5. https://doi.org/10.1016/j.febslet.2012.05.047   DOI
12 Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, et al. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell. 2004;6:193-203. https://doi.org/10.1016/S1534-5807(04)00022-X   DOI
13 Pai VP, Horseman ND. Multiple cellular responses to serotonin contribute to epithelial homeostasis. PLOS ONE. 2011;6:e17028. https://doi.org/10.1371/journal.pone.0017028   DOI
14 Deneris E, Gaspar P. Serotonin neuron development: shaping molecular and structural identities. Wiley Interdiscip Rev Dev Biol. 2018;7:e301. https://doi.org/10.1002/wdev.301   DOI
15 Weaver SR, Prichard AS, Maerz NL, Prichard AP, Endres EL, Hernandez-Castellano LE, et al. Elevating serotonin pre-partum alters the Holstein dairy cow hepatic adaptation to lactation. PLOS ONE. 2017;12:e0184939. https://doi.org/10.1371/journal.pone.0184939   DOI
16 Laporta J, Keil KP, Vezina CM, Hernandez LL. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLOS ONE. 2014;9:e110190. https://doi.org/10.1371/journal.pone.0110190   DOI
17 Oufkir T, Arseneault M, Sanderson JT, Vaillancourt C. The 5-HT2A serotonin receptor enhances cell viability, affects cell cycle progression and activates MEK-ERK1/2 and JAK2-STAT3 signalling pathways in human choriocarcinoma cell lines. Placenta. 2010;31:439-47. https://doi.org/10.1016/j.placenta.2010.02.019   DOI
18 Moon JH, Kim H, Kim H, Park J, Choi W, Choi W, et al. Lactation improves pancreatic β cell mass and function through serotonin production. Sci Transl Med. 2020;12:eaay0455. https://doi.org/10.1126/scitranslmed.aay0455   DOI
19 Zhao H, Chen S, Hu K, Zhang Z, Yan X, Gao H, et al. 5-HTP decreases goat mammary epithelial cells apoptosis through MAPK/ERK/Bcl-3 pathway. Gene. 2021;769:145240. https://doi.org/10.1016/j.gene.2020.145240   DOI
20 Azouzi S, Santuz H, Morandat S, Pereira C, Cote F, Hermine O, et al. Antioxidant and membrane binding properties of serotonin protect lipids from oxidation. Biophys J. 2017;112:1863-73. https://doi.org/10.1016/j.bpj.2017.03.037   DOI
21 Hernandez LL, Limesand SW, Collier JL, Horseman ND, Collier RJ. The bovine mammary gland expresses multiple functional isoforms of serotonin receptors. J Endocrinol. 2009;203:123-31. https://doi.org/10.1677/JOE-09-0187   DOI
22 Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93. https://doi.org/10.1016/j.cell.2012.03.017   DOI
23 Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, et al. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14:473-80. https://doi.org/10.4161/15384101.2014.991572   DOI
24 Ryskalin L, Lazzeri G, Flaibani M, Biagioni F, Gambardella S, Frati A, et al. mTOR-dependent cell proliferation in the brain. BioMed Res Int. 2017;2017:7082696. https://doi.org/10.1155/2017/7082696   DOI
25 Liu J, Wang Y, Li D, Wang Y, Li M, Chen C, et al. Milk protein synthesis is regulated by T1R1/T1R3, a G protein-coupled taste receptor, through the mTOR pathway in the mouse mammary gland. Mol Nutr Food Res. 2017;61:1601017. https://doi.org/10.1002/mnfr.201601017   DOI
26 Roux PP, Topisirovic I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb Perspect Biol. 2012;4:a012252. https://doi.org/10.1101/cshperspect.a012252   DOI
27 Goupille O, Barnier JV, Guibert B, Paly J, Djiane J. Effect of PRL on MAPK activation: negative regulatory role of the C-terminal part of the PRL receptor. Mol Cell Endocrinol. 2000;159:133-46. https://doi.org/10.1016/S0303-7207(99)00197-5   DOI
28 Kaul G, Pattan G, Rafeequi T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem Funct. 2011;29:227-34. https://doi.org/10.1002/cbf.1740   DOI
29 Groner B, Gouilleux F. Prolactin-mediated gene activation in mammary epithelial cells. Curr Opin Genet Dev. 1995;5:587-94. https://doi.org/10.1016/0959-437X(95)80027-1   DOI
30 Qian L, Lopez V, Seo YA, Kelleher SL. Prolactin regulates ZNT2 expression through the JAK2/STAT5 signaling pathway in mammary cells. Am J Physiol Cell Physiol. 2009;297:C369-77. https://doi.org/10.1152/ajpcell.00589.2008   DOI
31 Iida H, Ogihara T, Min MK, Hara A, Kim YG, Fujimaki K, et al. Expression mechanism of tryptophan hydroxylase 1 in mouse islets during pregnancy. J Mol Endocrinol. 2015;55:41-53. https://doi.org/10.1530/JME-14-0299   DOI
32 Jorgensen HS. Studies on the neuroendocrine role of serotonin. Dan Med Bull. 2007;54:266-88.
33 Pai VP, Horseman ND. Biphasic regulation of mammary epithelial resistance by serotonin through activation of multiple pathways. J Biol Chem. 2008;283:30901-10. https://doi.org/10.1074/jbc.M802476200   DOI
34 Ducy P. 5-HT and bone biology. Curr Opin Pharmacol. 2011;11:34-8. https://doi.org/10.1016/j.coph.2011.01.007   DOI
35 Kim DC, Jun DW, Kwon YI, Lee KN, Lee HL, Lee OY, et al. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int. 2013;33:535-43. https://doi.org/10.1111/liv.12110   DOI
36 Tang J, Wang Z, Liu J, Zhou C, Chen J. Downregulation of 5-hydroxytryptamine receptor 3A expression exerts an anticancer activity against cell growth in colorectal carcinoma cells in vitro. Oncol Lett. 2018;16:6100-8. https://doi.org/10.3892/ol.2018.9351   DOI
37 Hashemi-Firouzi N, Shahidi S, Soleimani-Asl S, Komaki A. 5-Hydroxytryptamine receptor 6 antagonist, SB258585 exerts neuroprotection in a rat model of streptozotocin-induced Alzheimer's disease. Metab Brain Dis. 2018;33:1243-53. https://doi.org/10.1007/s11011-018-0228-0   DOI
38 Zhang F, Feng X, Zeng Q, Wang B, Wilhelmsen K, Li Q, et al. Sevoflurane induced amnesia inhibits hippocampal arc expression partially through 5-hydroxytryptamine-7 receptors in the bilateral basolateral amygdala in rats. Neurosci Lett. 2014;562:13-8. https://doi.org/10.1016/j.neulet.2013.12.066   DOI
39 Lee SJ, Kim TW, Park HK, Yoon S, You AH, Moon EJ, et al. Postnatal treadmill exercise alleviates prenatal stress-induced anxiety in offspring rats by enhancing cell proliferation through 5-hydroxytryptamine 1A receptor activation. Int Neurourol J. 2016;20:S57-64. https://doi.org/10.5213/inj.1632600.309   DOI
40 Liu Y, Wang Z, Li J, Ban Y, Mao G, Zhang M, et al. Inhibition of 5-hydroxytryptamine receptor 2B reduced vascular restenosis and mitigated the β-arrestin2-mammalian target of rapamycin/p70S6K pathway. J Am Heart Assoc. 2018;7:e006810. https://doi.org/10.1161/JAHA.117.006810   DOI
41 Zuo X, Chen Z, Cai J, Gao W, Zhang Y, Han G, et al. 5-Hydroxytryptamine receptor 1D aggravates hepatocellular carcinoma progression through FoxO6 in AKT-dependent and independent manners. Hepatology. 2019;69:2031-47. https://doi.org/10.1002/hep.30430   DOI
42 Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195:198-213. https://doi.org/10.1016/j.bbr.2008.03.020   DOI
43 Kopparapu PK, Tinzl M, Anagnostaki L, Persson JL, Dizeyi N. Expression and localization of serotonin receptors in human breast cancer. Anticancer Res. 2013;33:363-70.
44 Wyler SC, Lord CC, Lee S, Elmquist JK, Liu C. Serotonergic control of metabolic homeostasis. Front Cell Neurosci. 2017;11:277. https://doi.org/10.3389/fncel.2017.00277   DOI
45 Pai VP, Hernandez LL, Stull MA, Horseman ND. The type 7 serotonin receptor, 5-HT7, is essential in the mammary gland for regulation of mammary epithelial structure and function. BioMed Res Int. 2015;2015:364746. https://doi.org/10.1155/2015/364746   DOI
46 Wallace E, Morrell NW, Yang XD, Long L, Stevens H, Nilsen M, et al. A sex-specific microRNA-96/5-hydroxytryptamine 1B axis influences development of pulmonary hypertension. Am J Respir Crit Care Med. 2015;191:1432-42. https://doi.org/10.1164/rccm.201412-2148OC   DOI
47 Spohn SN, Bianco F, Scott RB, Keenan CM, Linton AA, O'Neill CH, et al. Protective actions of epithelial 5-hydroxytryptamine 4 receptors in normal and inflamed colon. Gastroenterology. 2016;151:933-44.E3. https://doi.org/10.1053/j.gastro.2016.07.032   DOI
48 Gowland CJ, Hall IP, Sayers I. The role of receptor for advanced glycation endproducts (RAGE) and 5-hydroxytryptamine receptor subtype 4 (5HTR4) in bronchial epithelial function. Am J Respir Crit Care Med. 2012;185:A6335. https://doi.org/10.1164/ajrccmconference.2012.185.1_MeetingAbstracts.A6335   DOI
49 Johnston AN, Bu W, Hein S, Garcia S, Camacho L, Xue L, et al. Hyperprolactinemia-inducing antipsychotics increase breast cancer risk by activating JAK-STAT5 in precancerous lesions. Breast Cancer Res. 2018;20:42. https://doi.org/10.1186/s13058-018-0969-z   DOI
50 Bracha S, Viall A, Goodall C, Stang B, Ruaux C, Seguin B, et al. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line. BMC Vet Res. 2013;9:251. https://doi.org/10.1186/1746-6148-9-251   DOI
51 Stuettgen V, Brayden DJ. Investigations of piperazine derivatives as intestinal permeation enhancers in isolated rat intestinal tissue mucosae. AAPS J. 2020;22:33. https://doi. org/10.1208/s12248-020-0416-9   DOI
52 Jiang SH, Li J, Dong FY, Yang JY, Liu DJ, Yang XM, et al. Increased serotonin signaling contributes to the Warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology. 2017;153:277-91.E19. https://doi.org/10.1053/j.gastro.2017.03.008   DOI
53 Viall AK, Goodall CP, Stang B, Marley K, Chappell PE, Bracha S. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line. Vet Comp Oncol. 2016;14:e31-44. https://doi.org/10.1111/vco.12103   DOI
54 Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, et al. Hydrogen sulfide is a regulator of mammary gland development in prepubescent female mice. Mol Med Rep. 2020;22:4061-9. https://doi.org/10.3892/mmr.2020.11462   DOI
55 Wang B, Shi L, Men J, Li Q, Hou X, Wang C, et al. Controlled synchronization of prolactin/STAT5 and AKT1/mTOR in bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2020;56:243-52. https://doi.org/10.1007/s11626-020-00432-x   DOI
56 Gwynne WD, Shakeel MS, Girgis-Gabardo A, Kim KH, Ford E, Dvorkin-Gheva A, et al. Antagonists of the serotonin receptor 5A target human breast tumor initiating cells. BMC Cancer. 2020;20:724. https://doi.org/10.1186/s12885-020-07193-6   DOI
57 Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, et al. Regulation of the JAK2-STAT5 pathway by signaling molecules in the mammary gland. Front Cell Dev Biol. 2020;8:604896. https://doi.org/10.3389/fcell.2020.604896   DOI