Browse > Article
http://dx.doi.org/10.18325/jkmr.2021.31.1.81

Observational Study of ChondroT's Improvement of Blood Metabolites in High-fat Diet-induced Hyperlipidemia  

Yoon, Chan Suk (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongshin University)
Kim, Do Hyeong (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongshin University)
Na, Chang Su (Department of Meridian and Acupoint, College of Korean Medicine, Dongshin University)
Jeong, Ji Won (Yeongam Public Health Center)
Kim, Ji Hoon (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongshin University)
Kim, Sun Gil (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongshin University)
Choi, Ji Min (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongshin University)
Kim, Seon Jong (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Dongshin University)
Publication Information
Journal of Korean Medicine Rehabilitation / v.31, no.1, 2021 , pp. 81-93 More about this Journal
Abstract
Objectives The objective of the study was to investigate effects of ChondroT by improvement of blood metabolites in high-fat diet (HFD)-induced hyperlipidemia rat model. Methods Sprague-Dawley rats were randomly assigned to intact, control, simvastatin, and CT100, CT200 and CT400 (each n=6). For observing cholesterol change, animals were first fed high fat diet for 5 weeks and then high fat diet and drugs for 3 weeks. At the end of the experiment, total cholesterol, triglyceride, high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) were analyzed by obtained blood collection. Further, amplified leptin, peroxisome proliferator activated receptor (PPAR) and adiponectin DNA were observed by reverse transcription polymerase chain reaction analysis. Results Observing the effect of ChondroT on the change of lipid metabolism in hyperlipidemia-induced rats, triglyceride and total cholesterol were significantly decreased in SV100 group, HDL-C was significantly increased in SV100, CT100 and CT200 groups, and LDL-C was significantly decreased in SV100, CT100, CT200 and CT400 groups, compared to the control group. Leptin level in hyperlipidemia-induced rats was significantly decreased in CT100 and CT200 groups, compared to the control group. The effect of ChondroT on adiponectin level in hyperlipidemia-induced rats was significantly increased in SV100, CT100 and CT200 groups. PPAR level in hyperlipidemia-induced rats was significantly decreased in SV100, CT200 and CT400 groups. Platelete activating factor level in hyperlipidemia-induced rats was significantly decreased in CT100 and CT200 groups. Conclusions Based on these results, it could be suggested that ChondroT has certain effects of improving blood metabolites in HFD-induced hyperlipidemia.
Keywords
Osteoarthritis; ChondroT; High-fat diet; Hyperlipidemias;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gylling H, Plat J, Turley S, Ginsberg HN, Ellegard L, Jessup W, Jones PJ, Lutjohann D, Maerz W, Masana L, Silbernagel G, Staels B, Boren J, Catapano AL, de Backer G, Deanfield J, Descamps OS, Kovanen PT, Riccardi G, Tokgozoglu L, Chapman MJ. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232(2):346-60.   DOI
2 Jacobson TA. Toward "pain-free" statin prescribing: clinical algorithm for diagnosis and management of myalgia. Mayo Clin Proc. 2008;83(6):687-700.   DOI
3 Aiman U, Najmi A, Khan RA. Statin induced diabetes and its clinical implications. J Pharmacol Pharmacother. 2014;5(3):181-5.   DOI
4 Leutner M, Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, Klimek P, Kautzky-Willer A. Diagnosis of osteoporosis in statin-treated patients is dose-dependent. Annals of the Rheumatic Diseases. 2019;78:1706-11.   DOI
5 Lee W. Medical dictionary. Department of Pharmacology, Yonsei University. 5th ed. Paju:Gunja Publishing. 2012.
6 Pastori D, Pignatelli P, Farcomeni A, Nocella C, Bartimoccia S, Carnevale R, Violi F. Age-related increase of thromboxane B 2 and risk of cardiovascular disease in atrial fibrillation. Oncotarget. 2016;7(26): 39143-7.   DOI
7 Smyth EM. Thromboxane and the thromboxane receptor in cardiovascular disease. Clin Lipidol. 2010;5(2):209-19.   DOI
8 Fontana P, Zufferey A, Daali Y, Reny JL. Antiplatelet therapy: targeting the TxA2 pathway. J Cardiovasc Transl Res. 2014;7(1):29-38.   DOI
9 Pottie P, Presle N, Terlain B, Netter P, Mainard D, Berenbaum F. Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis. 2006;65(11):1403-5.   DOI
10 Aspden RM. Obesity punches above its weight in osteoarthritis. Nat Rev Rheumatol. 2011;7(1):65-8.   DOI
11 Niu J, Clancy M, Aliabadi P, Vasan R, Felson DT. Metabolic syndrome, its components, and knee osteoarthritis: the framingham osteoarthritis study. Arthritis Rheumatol Hoboken NJ. 2017;69(6):1194-203.   DOI
12 Zhuo Q, Yang W, Chen J, Wang Y. Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol. 2012;8(12):729-37.   DOI
13 Won JY, Jeong JW, Na CS, Kim SJ. Analgesic effects of ChondroT in collagenase-induced osteoarthritis rat model. J Korean Med Rehabil. 2016;26(3):17-30.   DOI
14 Park JU, Kim SJ, Na CS, Choi CH, Seo CS, Son JK, Kang BY, Kim YR. Chondroprotective and anti-inflammatory effects of ChondroT, a new complex herbal medication. BMC Complement Altern Med. 2016; 16(1):213.   DOI
15 Datta P, Zhang Y, Parousis A, Sharma A, Rossomacha E, Endisha H, Wu B, Kacprzak I, Mahomed NN, Gandhi R, Rockel JS, Kapoor M. High-fat diet-induced acceleration of osteoarthritis is associated with a distinct and sustained plasma metabolite signature. Sci Rep. 2017;7(1):8205.   DOI
16 Jeong JW, Bae KJ, Kim SG, Kwak DW, Moon YJ, Choi CH, Kim YR, Na CS, Kim SJ. Anti-osteoarthritic effects of ChondroT in a rat model of collagenase-induced osteoarthritis. BMC Complement Altern Med. 2018; 18(1):131.   DOI
17 Kim SG, Jeong JW, Lim YH, Kim JH, Na CS, Kim SJ. A study on the anti-condensing effect of ChondroT components. J Korean Med Rehabil. 2018;28(2):47-60.   DOI
18 Musa-Veloso K, Poon TH, Elliot JA, Chung C. A com- parison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent Fatty Acids. 2011;85(1):9-28.   DOI
19 Bae KJ, Jeong JW, Choi CH, Won JY, Kim TG, Kim YR, Na CS, Kim SJ. Antiosteoarthritic effects of ChondroT in a rat model of monosodium iodoacetate-induced osteoarthritis. Evid Based Complement Alternat Med. 2018;2018:1-11.
20 Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet Lond Engl. 2011;378(9786):169-81.   DOI
21 Wallace JP, Johnson B, Padilla J, Mather K. Postprandial lipaemia, oxidative stress and endothelial function: a review. Int J Clin Pract. 2010;64(3):389-403.   DOI
22 Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, SmithJr SC, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735-52.   DOI
23 van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002;25(3):417-24.   DOI
24 Alipour A, Elte JWF, van Zaanen HCT, Rietveld AP, Cabezas MC. Postprandial inflammation and endothelial dysfuction. Biochem Soc Trans. 2007;35(Pt 3):466-9.   DOI
25 de Munter W, van der Kraan PM, van den Berg WB, van Lent PLEM. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatol Oxf Engl. 2016;55(1):16-24.   DOI
26 Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta. 2012;1821(5):721-6.   DOI
27 Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci. 2017;24(1):50.   DOI
28 de Munter W, Blom AB, Helsen MM, Walgreen B, van der Kraan PM, Joosten LAB, van den Berg WB, van Lent PLEM. Cholesterol accumulation caused by low density lipoprotein receptor deficiency or a cholesterol-rich diet results in ectopic bone formation during experimental osteoarthritis. Arthritis Res Ther. 2013;15(6):R178.   DOI
29 Hu P, Bao J, Wu L. The emerging role of adipokines in osteoarthritis: a narrative review. Mol Biol Rep. 2011;38(2):873-8.   DOI
30 Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19-25.   DOI
31 Presle N, Pottie P, Dumond H, Guillaume C, Lapicque F, Pallu S, Mainard D, Netter P, Terlain B. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthritis Cartilage. 2006;14(7):690-5.   DOI
32 de Boer TN, van Spil WE, Huisman AM, Polak AA, Bijlsma JWJ, Lafeber FPJG, Mastbergen SC. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis Cartilage. 2012;20(8):846-53.   DOI
33 Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48(11):3118-29.   DOI
34 Unger RH. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie. 2005;87(1):57-64.   DOI
35 Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423(6941):762-9.   DOI
36 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930-5.   DOI
37 Gilardini L, McTernan PG, Girola A, da Silva NF, Alberti L, Kumar S, Invitti C. Adiponectin is a candidate marker of metabolic syndrome in obese children and adolescents. Atherosclerosis. 2006;189(2):401-7.   DOI
38 Otero M, Lago R, Gomez R, Lago F, Dieguez C, Gomez-Reino JJ, Gualillo O. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis. 2006;65(9):1198-201.   DOI
39 Chen TH, Chen L, Hsieh MS, Chang CP, Chou DT, Tsai SH. Evidence for a protective role for adiponectin in osteoarthritis. Biochim Biophys Acta. 2006;1762(8): 711-8.   DOI
40 Larralaga-Vera A, Lamuedra A, Prez-Baos S, Prieto-Potin I, Pena L, Herrero-Beaumont G, Largo R. Increased synovial lipodystrophy induced by high fat diet aggravates synovitis in experimental osteoarthritis. Arthritis Res Ther. 2017;19(1):264.   DOI
41 Collins KH, Reimer RA, Seerattan RA, Leonard TR, Herzog W. Using diet-induced obesity to understand a metabolic subtype of osteoarthritis in rats. Osteoarthritis Cartilage. 2015;23(6):957-65.   DOI
42 Smallridge RC, Copland JA, Brose MS, Wadsworth T, Houvras Y, Menefee ME, Bible KC, Shah MH, Gramza AW, Klopper JP, Marlow LA, Heckman MG, von Roemeling R. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase 1 trial. J Clin Endocrinol Metab. 2013;98(6):2392-400.   DOI
43 Willson TM, Lambert MH, Kliewer SA. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem. 2001;70:341-67.   DOI
44 Kim HI, Ahn YH. Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes. 2004;53 Suppl 1:S60-5.   DOI
45 Shimazaki N, Togashi N, Hanai M, Isoyama T, Wada K, Fujita T, Fujiwara K, Kurakata S. Anti-tumour activity of CS-7017, a selective peroxisome proliferator-activated receptor gamma agonist of thiazolidinedione class, in human tumour xenografts and a syngeneic tumour implant model. Eur J Cancer Oxf Engl 1990. 2008;44(12):1734-43.
46 Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21(4):312-8.   DOI
47 Serizawa M, Murakami H, Watanabe M, Takahashi T, Yamamoto N, Koh Y. Peroxisome proliferator-activated receptor γ agonist efatutazone impairs transforming growth factor β2-induced motility of epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer cells. Cancer Sci. 2014;105(6):683-9.   DOI
48 Toth PP, Simko RJ, Palli SR, Koselleck D, Quimbo RA, Cziraky MJ. The impact of serum lipids on risk for microangiopathy in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2012;11:109.   DOI