DOI QR코드

DOI QR Code

Melanogenesis Promotion by 3-Deazaneplanocin A, a Specific Inhibitor of S-Adenosylhomocysteine Hydrolase, in B16/F10 Melanoma Cells

B16/F10 흑색종 세포에서 S-Adenosylhomocysteine Hydrolase 의 선택적 저해제 3-Deazaneplanocin A 에 의한

  • Hwang, Yun Jeong (Department of Molecular Medicine, School of Medicine, Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University) ;
  • Boo, Yong Chool (Department of Molecular Medicine, School of Medicine, Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University)
  • 황윤정 (경북대학교 의학전문대학원 분자의학교실) ;
  • 부용출 (경북대학교 의학전문대학원 분자의학교실)
  • Received : 2021.03.10
  • Accepted : 2021.05.14
  • Published : 2021.06.30

Abstract

Skin hypopigmentation, which is observed in albinism or vitiligo, occurs when melanin synthesis is decreased by genetic, epigenetic, and other factors. To identify drug candidates that can promote melanin synthesis in cells, we screened an epigenetic modulator library consisting of 141 cell-permeable, small molecule drugs. B16/F10 murine melanoma cells were treated with each drug at 0.1 𝜇M and melanin synthesis and cell viability were subsequently monitored. As a result, (-)-neplanocin A, 3-deazaneplanocin A (DZNep), and DZNep hydrochloride were found to increase cellular melanin synthesis without causing cytotoxicity. Because these three structurally related drugs exhibited similar dose-dependent effects on melanin synthesis and cell viability, DZNep was selected as a representative drug for additional experiments. DZNep increased intracellular melanin content and tyrosinase (TYR) activity. DZNep also induced the expression of TYR, tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT) at the mRNA and protein levels. DZNep also induced the mRNA and protein expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanin synthesis. DZNep is a specific inhibitor of S-adenosylhomocysteine hydrolase and it caused the accumulation of S-adenosylhomocysteine that inhibits histone methyltransferases in cells. This study suggests that melanogenesis can be modulated by targeting S-adenosylhomocysteine hydrolase in certain cellular contexts.

백색증이나 백반증에서 관찰되는 피부 저색소침착은 유전적 요인, 후성유전적 요인 및 기타 요인에 의해 멜라닌 합성이 감소할 때 발생한다. 세포에서 멜라닌 합성을 촉진 할 수 있는 약물 후보를 확인하기 위해 141개의 세포 투과성 저분자 약물로 구성된 후성유전적 조절제 라이브러리를 스크리닝했다. B16/F10 쥐 흑색종 세포를 0.1 𝜇M에서 각 약물로 처리하고 멜라닌 합성 및 세포 생존력을 모니터링했다. 그 결과, (-)-네플라노신 A, 3-디아자네플라노신 A (DZNep) 및 DZNep 염산염이 세포 독성을 일으키지 않고 멜라닌 합성을 증가시키는 것으로 나타났다. 이 세 가지 구조적으로 관련된 약물은 세포 멜라닌 합성 및 세포 생존력에 유사한 용량 의존적 효과를 나타내었기 때문에 DZNep을 추가 실험을 위한 대표 약물로 선택하였다. DZNep는 세포내 멜라닌 함량과 티로시나제(TYR) 활성을 증가 시켰다. DZNep은 또한 mRNA와 단백질 수준에서 TYR, 티로시나제 관련 단백질 1 (TYRP1) 및 도파크롬 토토머라제 (DCT)의 발현을 유도했다. DZNep는 또한 멜라닌 합성의 주요 조절자인 소안구증 관련 전사 인자(MITF)의 mRNA와 단백질 발현을 유도했다. DZNep은 S-아데노실 호모시스테인 가수분해효소의 선택적 억제제이며 히스톤 메틸화효소를 저해하는 S-아데노실 호모시스테인의 세포내 축적을 유발하였다. 이 연구는 특정 세포 상황에서 S-아데노실 호모시스테인 가수분해효소를 표적함으로써 멜라닌 생성이 조절될 수 있음을 시사한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2019R1I1A2A01045132), Republic of Korea.

References

  1. R. Ganceviciene, A. I. Liakou, A. Theodoridis, E. Makrantonaki, and C. C. Zouboulis, Skin anti-aging strategies, Dermatoendocrinol., 4(3), 308 (2012). https://doi.org/10.4161/derm.22804
  2. M. Ramos-e-Silva, L. R. Celem, S. Ramos-e-Silva, and A. P. Fucci-da-Costa, Anti-aging cosmetics: Facts and controversies, Clin. Dermatol., 31(6), 750 (2013). https://doi.org/10.1016/j.clindermatol.2013.05.013
  3. P. T. Rose, Pigmentary disorders, Med. Clin. North. Am., 93(6), 1225 (2009). https://doi.org/10.1016/j.mcna.2009.08.005
  4. V. D. Callender, S. St Surin-Lord, E. C. Davis, and M. Maclin, Postinflammatory hyperpigmentation: etiologic and therapeutic considerations, Am. J. Clin. Dermatol., 12(2), 87 (2011). https://doi.org/10.2165/11536930-000000000-00000
  5. P. Ganju, S. Nagpal, M. H. Mohammed, P. Nishal Kumar, R. Pandey, V. T. Natarajan, S. S. Mande, and R. S. Gokhale, Microbial community profiling shows dysbiosis in the lesional skin of vitiligo subjects, Sci. Rep., 6, 18761 (2016). https://doi.org/10.1038/srep18761
  6. R. A. Spritz and G. H. Andersen, Genetics of vitiligo, Dermatol. Clin., 35(2), 245 (2017). https://doi.org/10.1016/j.det.2016.11.013
  7. M. B. C. Maymone, H. H. Neamah, E. A. Secemsky, and N. A. Vashi, Correlating the dermatology life quality index and skin discoloration impact evaluation questionnaire tools in disorders of hyperpigmentation, J. Dermatol., 45(3), 361 (2018). https://doi.org/10.1111/1346-8138.14172
  8. J. D. Simon, D. Peles, K. Wakamatsu, and S. Ito, Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function, Pigment Cell Melanoma Res., 22(5), 563 (2009). https://doi.org/10.1111/j.1755-148X.2009.00610.x
  9. C. Olivares and F. Solano, New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins, Pigment Cell Melanoma Res., 22(6), 750 (2009). https://doi.org/10.1111/j.1755-148X.2009.00636.x
  10. M. V. Schiaffino, Signaling pathways in melanosome biogenesis and pathology, Int. J. Biochem. Cell Biol., 42(7), 1094 (2010). https://doi.org/10.1016/j.biocel.2010.03.023
  11. A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84(4), 1155 (2004). https://doi.org/10.1152/physrev.00044.2003
  12. Y. C. Boo, Up- or downregulation of melanin synthesis using amino acids, peptides, and their analogs, Biomedicines, 8(9), 322 (2020). https://doi.org/10.3390/biomedicines8090322
  13. Y. C. Boo, Human skin lightening efficacy of resveratrol and its analogs: from in vitro studies to cosmetic applications, Antioxidants, 8(9), 332 (2019). https://doi.org/10.3390/antiox8090332
  14. Y. C. Boo, p-coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects, Antioxidants, 8(8), 275 (2019). https://doi.org/10.3390/antiox8080275
  15. C. Niu and H. A. Aisa, Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo, Molecules, 22(8), 1303 (2017). https://doi.org/10.3390/molecules22081303
  16. T. Pillaiyar, V. Namasivayam, M. Manickam, and S. H. Jung, Inhibitors of melanogenesis: an updated review, J. Med. Chem., 61(17), 7395 (2018). https://doi.org/10.1021/acs.jmedchem.7b00967
  17. Y. C. Boo, Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials, Antioxidants, 9(7), 637 (2020). https://doi.org/10.3390/antiox9070637
  18. K. D. Haltaufderhyde and E. Oancea, Genome-wide transcriptome analysis of human epidermal melanocytes, Genomics, 104(6 Pt B), 482 (2014). https://doi.org/10.1016/j.ygeno.2014.09.010
  19. M. Soejima and Y. Koda, Population differences of two coding SNPs in pigmentation-related genes SLC24A5 and SLC45A2, Int. J. Legal Med., 121(1), 36 (2007). https://doi.org/10.1007/s00414-006-0112-z
  20. J. B. Cheng and R. J. Cho, Genetics and epigenetics of the skin meet deep sequence, J. Invest. Dermatol., 132(3 Pt 2), 923 (2012). https://doi.org/10.1038/jid.2011.436
  21. J. S. Shin, H. S. Jeong, M. K. Kim, H. Y. Yun, K. J. Baek, N. S. Kwon, and D. S. Kim, The DNA methylation inhibitor 5-azacytidine decreases melanin synthesis by inhibiting CREB phosphorylation, Pharmazie, 70(10), 646 (2015).
  22. S. Yokoyama, E. Feige, L. L. Poling, C. Levy, H. R. Widlund, M. Khaled, A. L. Kung, and D. E. Fisher, Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage, Pigment Cell Melanoma Res., 21(4), 457 (2008). https://doi.org/10.1111/j.1755-148X.2008.00480.x
  23. K. H. Kim, B. H. Bin, J. Kim, S. E. Dong, P. J. Park, H. Choi, B. J. Kim, S. J. Yu, H. Kang, H. H. Kang, E. G. Cho, and T. R. Lee, Novel inhibitory function of miR-125b in melanogenesis, Pigment Cell Melanoma Res., 27(1), 140 (2014). https://doi.org/10.1111/pcmr.12179
  24. K. H. Kim, T. R. Lee, and E. G. Cho, SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF, Exp. Mol. Med., 49(8), e367 (2017). https://doi.org/10.1038/emm.2017.115
  25. H . Song, Y. J. Hwang, J. W. Ha, and Y. C. Boo, Screening of an epigenetic drug library identifies 4-((hydroxyamino) carbonyl)-N-(2-hydroxyethyl)-N-phenyl -benzeneacetamide that reduces melanin synthesis by inhibiting tyrosinase activity independently of epigenetic mechanisms, Int. J. Mol. Sci., 21(13), 4589 (2020). https://doi.org/10.3390/ijms21134589
  26. R. I. Glazer, K. D. Hartman, M. C. Knode, M. M. Richard, P. K. Chiang, C. K. Tseng, and V. E. Marquez, 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60, Biochem. Biophys. Res. Commun., 135(2), 688 (1986). https://doi.org/10.1016/0006-291X(86)90048-3
  27. J. Selhub, Homocysteine metabolism, Annu. Rev. Nutr., 19, 217 (1999). https://doi.org/10.1146/annurev.nutr.19.1.217
  28. J. K. Seok, S. W. Lee, J. Choi, Y. M. Kim, and Y. C. Boo, Identification of novel antimelanogenic hexapeptides via positional scanning of a synthetic peptide combinatorial library, Exp. Dermatol., 26(8), 742 (2017). https://doi.org/10.1111/exd.13262
  29. J. H. Kim, J. K. Seok, Y. M. Kim, and Y. C. Boo, Identification of small peptides and glycinamide that inhibit melanin synthesis using a positional scanning synthetic peptide combinatorial library, Br. J. Dermatol., 181(1), 128 (2019). https://doi.org/10.1111/bjd.17634
  30. S. A. Altman, L. Randers, and G. Rao, Comparison of trypan blue-dye exclusion and fluorometric assays for mammalian-cell viability determinations, Biotechnol. Prog., 9(6), 671 (1993). https://doi.org/10.1021/bp00024a017
  31. A. Garcia-Jimenez, J. A. Teruel-Puche, J. Berna, J. N. Rodriguez-Lopez, J. Tudela, and F. Garcia-Canovas, Action of tyrosinase on alpha and beta-arbutin: A kinetic study, PLoS One, 12(5), e0177330 (2017). https://doi.org/10.1371/journal.pone.0177330
  32. S. W. Lee, J. H. Kim, H. Song, J. K. Seok, S. S. Hong, and Y. C. Boo, Luteolin 7-sulfate attenuates melanin synthesis through inhibition of CREB- and MITF-mediated tyrosinase expression, Antioxidants, 8(4), 87 (2019). https://doi.org/10.3390/antiox8040087
  33. S. M. An, J. S. Koh, and Y. C. Boo, Inhibition of melanogenesis by tyrosinase siRNA in human melanocytes, BMB Rep., 42(3), 178 (2009). https://doi.org/10.5483/BMBRep.2009.42.3.178
  34. R. Yang, Y. Zheng, L. Li, S. Liu, M. Burrows, Z. Wei, A. Nace, M. Herlyn, R. Cui, W. Guo, G. Cotsarelis, and X. Xu, Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors, Nat. Commun., 5, 5807 (2014). https://doi.org/10.1038/ncomms6807
  35. G. Y. Seo, Y. Ha, A. H. Park, O. W. Kwon, and Y. J. Kim, Leathesia difformis extract inhibits alpha-MSH-induced melanogenesis in B16F10 cells via down-regulation of CREB signaling pathway, Int. J. Mol. Sci., 20(3), 536 (2019). https://doi.org/10.3390/ijms20030536
  36. M. S. H an, X. Che, G. H . Cho, H . R. Park, K. E. Lim, N. R. Park, J. S. Jin, Y. K. Jung, J. H. Jeong, I. K. Lee, S. Kato, and J. Y. Choi, Functional cooperation between vitamin D receptor and Runx2 in vitamin D-induced vascular calcification, Plos One, 8(12), e83584 (2013). https://doi.org/10.1371/journal.pone.0083584
  37. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method, Methods, 25(4), 402 (2001). https://doi.org/10.1006/meth.2001.1262
  38. K. B. Seamon, W. Padgett, and J. W. Daly, Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells, Proc. Natl. Acad. Sci. U S A, 78(6), 3363 (1981). https://doi.org/10.1073/pnas.78.6.3363
  39. J. A. D'Orazio, T. Nobuhisa, R. Cui, M. Arya, M. Spry, K. Wakamatsu, V. Igras, T. Kunisada, S. R. Granter, E. K. Nishimura, S. Ito, and D. E. Fisher, Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning, Nature, 443(7109), 340 (2006). https://doi.org/10.1038/nature05098
  40. T. B. Miranda, C. C. Cortez, C. B. Yoo, G. N. Liang, M. Abe, T. K. Kelly, V. E. Marquez, and P. A. Jones, DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation, Mol. Cancer Ther., 8(6), 1579 (2009). https://doi.org/10.1158/1535-7163.MCT-09-0013
  41. A. Hayden, P. W. M. Johnson, G. Packham, and S. J. Crabb, S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition, Breast Cancer Res. Treat., 127(1), 109 (2011). https://doi.org/10.1007/s10549-010-0982-0
  42. F. Liu, D. Barsyte-Lovejoy, F. L. Li, Y. Xiong, V. Korboukh, X. P. Huang, A. Allali-Hassani, W. P. Janzen, B. L. Roth, S. V. Frye, C. H. Arrowsmith, P. J. Brown, M. Vedadi, and J. Jin, Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP, J. Med. Chem., 56(21), 8931 (2013). https://doi.org/10.1021/jm401480r
  43. Z. Y. Lu, H . R. Salwen, J. U. Raj, and Q. W. Yang, Histone lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, and DNA methylation of human neuroblastoma cells, Cancer Res., 72((2012).
  44. R. Dey-Rao and A. A. Sinha, Interactome analysis of gene expression profile reveals potential novel key transcriptional regulators of skin pathology in vitiligo, Genes Immun., 17(1), 30 (2016). https://doi.org/10.1038/gene.2015.48
  45. S. Singh, U. Singh, and S. S. Pandey, Increased level of serum homocysteine in vitiligo, J. Clin. Lab. Anal., 25(2), 110 (2011). https://doi.org/10.1002/jcla.20442
  46. J. Silverberg, and N. Silverberg, Serum homocysteine is associated with extent of vitiligo vulgaris, J. Am. Acad. Dermatol., 64(2), Ab142 (2011).
  47. T. Y. Tsai, C. Y. Kuo, and Y. C. Huang, Serum homocysteine, folate, and vitamin B-12 levels in patients with vitiligo and their potential roles as disease activity biomarkers: A systematic review and meta-analysis, J. Am. Acad. Dermatol., 80(3), 646 (2019). https://doi.org/10.1016/j.jaad.2018.08.029
  48. J. Chen, T. Zhuang, J. Chen, Y. Tian, X. Yi, Q. Ni, W. Zhang, P. Song, Z. Jian, L. Liu, T. Cui, K. Li, T. Gao, C. Li, and S. Li, Homocysteine induces melanocytes apoptosis via PERK-eIF2alpha-CHOP pathway in vitiligo, Clin. Sci. (Lond), 134(10), 1127 (2020). https://doi.org/10.1042/cs20200218
  49. O. Reish, D. Townsend, S. A. Berry, M. Y. Tsai, and R. A. King, Tyrosinase inhibition due to interaction of homocysteine with copper - the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency, Am. J. Hum. Genet., 57(1), 127 (1995).