• 제목/요약/키워드: Transcription Factor

검색결과 1,962건 처리시간 0.033초

포도 VIASR 유전자 프로모터의 분리 및 발현 분석 (Cloning and Expression Analysis of a Grape asr gene, VlASR Containing a Promoter Region.)

  • 길준영;피재호
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1157-1165
    • /
    • 2007
  • 포도 ASR (VvMSA) 단백질은 hexose transporter 유전자 VvHT1의 전사를 조절하는 조절 인자 중의 하나로서 sugar 및 abscisic acid (ABA) 신호에 의해 발현이 유도된다. 본 연구진은 ACP RT-PCR (annealing control primer reverse transcriptase-polymerase chain reaction) 방법을 이용하여 포도 과실발달 과정에서 조절되는 유전자 중 VvMSA와 동일한 cDNA (VlASR)를 클로닝하였다. 이 유전자는 착과 시기에 발현되기 시작하여 과실이 발달하면서 점점 증가하여 착과 후 10 주에 가장 많이 발현되며, 숙기 후반에는 도리어 발현양이 감소하였다. 포도 asr 유전자의 조절기작을 밝히기 위해, 이 유전자의 genomic clone을 분리하였다. 총 1375 bp로 이루어진 이 유전자 절편에는 open reading frame과 100 bp의 intron을 포함하고 있다. 약 600 bp 길이의 프로모터 내에는 sugar 신호전달과 연관이 있는 것으로 알려진 sugar box(sucrose box 3 +sucrose response box 1)가 있다. 프로모터 절편을 reporter 유전자와 연결하여 Arabidopsis에 도입하고 형질전환체를 분석한 결과, reporter 유전자는 sucrose 처리와 상관없이 항상 발현되었다. 이러한 결과는 포도에서 보고된 ASR/VvHT1를 매개로 하는 sugar/ABA 신호전달계가 asr 유전자가 없는 Arabidopsis에서는 작동되지 않음을 시사하고 있다.

Identification of Functional and In silico Positional Differentially Expressed Genes in the Livers of High- and Low-marbled Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Yoon, Duhak;Park, Jun-Hyung;Hong, Seong-Koo;Im, Seok-Ki;Thompson, J.M.;Oh, Sung-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1334-1341
    • /
    • 2007
  • This study identified hepatic differentially expressed genes (DEGs) affecting the marbling of muscle. Most dietary nutrients bypass the liver and produce plasma lipoproteins. These plasma lipoproteins transport free fatty acids to the target tissue, adipose tissue and muscle. We examined hepatic genes differentially expressed in a differential-display reverse transcription-polymerase chain reaction (ddRT-PCR) analysis comparing high- and low-marbled Hanwoo steers. Using 60 arbitrary primers, we found 13 candidate genes that were upregulated and five candidate genes that were downregulated in the livers of high-marbled Hanwoo steers compared to low-marbled individuals. A BLAST search for the 18 DEGs revealed that 14 were well characterized, while four were not annotated. We examined four DEGs: ATP synthase F0, complement component CD, insulin-like growth factor binding protein-3 (IGFBP3) and phosphatidylethanolamine binding protein (PEBP). Of these, only two genes (complement component CD and IGFBP3) were differentially expressed at p<0.05 between the livers of high- and low-marbled individuals. The mean mRNA levels of the PEBP and ATP synthase F0 genes did not differ significantly between the livers of high- and low-marbled individuals. Moreover, these DEGs showed very high inter-individual variation in expression. These informative DEGs were assigned to the bovine chromosome in a BLAST search of MS marker subsets and the bovine genome sequence. Genes related to energy metabolism (ATP synthase F0, ketohexokinase, electron-transfer flavoprotein-ubiquinone oxidoreductase and NADH hydrogenase) were assigned to BTA 1, 11, 17, and 22, respectively. Syntaxin, IGFBP3, decorin, the bax inhibitor gene and the PEBP gene were assigned to BTA 3, 4, 5, 5, and 17, respectively. In this study, the in silico physical maps provided information on the specific location of candidate genes associated with economic traits in cattle.

Single Nucleotide Polymorphisms linked to the SlMYB12 Gene that Controls Fruit Peel Color in Domesticated Tomatoes (Solanum lycopersicum L.)

  • Kim, Bichsaem;Kim, Nahui;Kang, Jumsoon;Choi, Youngwhan;Sim, Sung-Chur;Min, Sung Ran;Park, Younghoon
    • 원예과학기술지
    • /
    • 제33권4호
    • /
    • pp.566-574
    • /
    • 2015
  • Yellow or transparent fruit peel color is caused by the accumulation or lack of naringenin chalcone (NG, C) in fruit peel and determines the red or pink appearance of tomato fruit, respectively. NGC biosynthesis is regulated by the SlMYB12 gene of the Y locus on chromosome 1, and DNA markers derived from SlMYB12 would be useful for marker-assisted selection (MAS) of tomato fruit color. To develop a gene-based marker, 4.9 kb of the SlMYB12 gene including a potential promoter region was sequenced from the red-fruited (YY) line 'FCR' and pink-fruited (yy) line 'FCP'. Sequence alignment of these SlMYB12 alleles revealed no sequence variations between 'FCR' and 'FCP'. To identify SlMYB12-linked single nucleotide polymorphisms (SNPs), 'FCR' and 'FCP' were genotyped using a SolCAP Tomato SNP array and CAPS markers (CAPS-456, 531, 13762, and 38123) were developed from the four SNPs (solcap_snp_sl_456, 531, 13762, and 38123) most closely flanking the SlMYB12. These CAPS markers were mapped using $F_2$ plants derived from 'FCR' ${\times}$ 'FCP'. The map positions of the fruit peel color locus (Y) were CAPS-13762 (0 cM) - 456 (11.09 cM) - Y (15.71 cM) - 38123 (17.82 cM) - 531 (30.86 cM), and the DNA sequence of SlMYB12 was physically anchored in the middle of CAPS-456 and CAPS-38123, indicating that fruit peel color in domesticated tomato is controlled by SlMYB12. A total of 64 SolCAP tomato germplasms were evaluated for their fruit peel color and SNPs located between solcap_snp_sl_456 and 38123. Seven SNPs that were detected in this interval were highly conserved for pink-fruited accessions and specific to transparent fruit peel traits, as depicted by a phenetic tree of 64 accessions based on the seven SNPs.

반하후박탕(半夏厚朴湯)이 생쥐의 심리적 스트레스에 미치는 영향과 유전자 분석 (Effect of Banhahoobak-tang (Banxiahoupo-tang) Extract (BHTe) on Psychological Stress)

  • 최금애;조수인;김경수;최창원;위통순;양승정;박수연;김경옥
    • 동의신경정신과학회지
    • /
    • 제26권2호
    • /
    • pp.117-130
    • /
    • 2015
  • Objectives: Banhahoobak-tang has been used to treat plum-pit qi, chest and hypochondriac distension, moist or greasy tongue coat, and wiry slow or wiry slippery pulse. It might be used to control coughing and vomiting. We observed that Banhahoobak-tang extract (BHTe) had anti-psychological stress effect. The objective of this study was to determine the effect of BHTe on restoring the transcriptional regulation of genes related to psychological stress. Methods: After giving psychological stress to mice, BHTe was orally administered at 100 mg/kg/day for five days. After extracting whole brain tissue from the mice, the gene expression changes were determined by microarray. Transcription factor binding site (TFBS) analysis showed up- and down-regulated genes related to psychological stress were protected by BHTe and segregated according to the structure of TFBS. We performed text based Pubmed search to select significant target genes involved in psychological stress affected by BHTe. Results: 1. Serum corticosterone level was decreased in the BHTe administered group, although the psychological stress was increased. 2. The BHTe administered group had no significant change in noradrenaline content in brain tissue, but the psychological stress group had decreased level. 3. The BHTe administered group had increased time of staying at open-arm than the psychological stress group. 4. Microarray revealed that TANK and RARA genes were up-regulated genes while AES, CDC42, FOS, NCL, and PVR were down-regulated genes by psychological stress but restored by BHTe.

Glatiramer acetate 투여에 의한 자가면역성 뇌척수염 마우스의 중추신경계에서의 NFκB 활성 억제 (Glatiramer acetate inhibits the activation of NFκB in the CNS of experimental autoimmune encephalomyelitis)

  • 황인선;하단비;김대승;주해진;지영흔
    • 대한수의학회지
    • /
    • 제51권3호
    • /
    • pp.217-225
    • /
    • 2011
  • Glatiramer acetate (GA; Copaxone) has been shown to be effective in preventing and suppressing experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). It has been recently shown that GA-reactive T cells migrate through the blood-brain barrier, accumulate in the central nervous system (CNS), secrete antiinflammatory cytokines and suppress production of proinflammatory cytokines of EAE and MS. Development of EAE requires coordinated expression of a number of genes involved in the activation and effector functions of inflammatory cells. Activation of inflammatory cells is regulated at the transcriptional level by several families of transcription factors. One of these is the nuclear factor kappa B ($NF{\kappa}B$) family which is present in a variety of cell types and involved in the activation of immune-relative genes during inflammatory process. Since it is highly activated at site of inflammation, $NF{\kappa}B$ activation is also implicated in the pathogenesis of EAE. In this study, we examined whether the inhibition of $NF{\kappa}B$ activation induced by GA can have suppressive therapeutic effects in EAE mice. We observed the expression of $NF{\kappa}B$ and phospho-$I{\kappa}B$ proteins increased in GA-treated EAE mice compared to EAE control groups. The immunoreactivity in inflammatory cells and glial cells of $NF{\kappa}B$ and phospho-$I{\kappa}B$ significantly decreased at the GA-treated EAE mice. These results suggest that treatment of GA in EAE inhibits the activation of $NF{\kappa}B$ and phophorylation of $I{\kappa}B$ in the CNS. Subsequently, the inhibition of $NF{\kappa}B$ activation and $I{\kappa}B$ phosphorylation leads to the anti-inflammatory effects thereby to reduce the progression and severity of EAE.

글루타민 결핍에 따른 Tight Junction 및 MMPs 활성 조절을 통한 전립선 암세포의 침윤 억제 현상 (Glutamine Deprivation Inhibits Invasion of Human Prostate Carcinoma LnCap Cells through Inactivation of Matrix Metalloproteinases and Modulation of Tight Junctions)

  • 신동역;최영현
    • 한국식품영양과학회지
    • /
    • 제42권8호
    • /
    • pp.1167-1174
    • /
    • 2013
  • 암세포를 포함한 생체 내 빠른 분열을 요구하는 세포 집단에서 세포 내 구성요소 및 에너지원으로서 글루타민의 요구량이 증대되지만, 종양세포의 글루타민 의존적 대사작용에 관한 기전은 여전히 잘 알려진 바 없다. 본 연구에서는 LnCaP 전립선 암세포의 이동성 및 침윤성에 미치는 글루타민 결핍효능을 조사하였다. 본 연구의 결과에 의하면 LnCaP 세포에서 글루타민 결핍에 의하여 세포의 이동성 및 세포의 침윤성이 현저하게 억제되었으며, 이러한 이동성 및 침윤성 억제는 TIMPs의 발현 증대에 의한 MMPs의 발현 감소 및 그들의 효소적 활성 저하와 연관성이 있었다. 또한 글루타민이 결핍된 조건에서 배양된 LnCaP 세포에서 TER의 현저한 증가가 관찰되었는데, 이는 TJs의 조절인자인 claudin family 발현의 차단에 의한 것으로 생각되어진다. 본 연구의 결과에 의하면 암세포의 증식에서 글루타민의 결핍은 TJ의 결합력 증대와 MMPs의 활성을 저하시킴으로써 암세포 전이에 가장 기본적인 과정인 암세포의 이동성과 침윤성을 억제시킬 수 있을 것으로 생각된다.

The Existence of a Putative Regulatory Element in 3'-Untranslated Region of Proto-oncogene HOX11's mRNA

  • Li, Yue;Jiang, Zhao-Zhao;Chen, Hai-Xu;Leung, Wai-Keung;Sung, Joseph J.Y.;Ma, Wei-Jun
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.500-506
    • /
    • 2005
  • HOX11 encodes a homeodomain-containing transcription factor which directs the development of the spleen during embryogenesis. While HOX11 expression is normally silenced through an unknown mechanism in all tissues by adulthood, the deregulation of HOX11 expression is associated with leukemia, such as T-cell acute lymphoblastic leukemia. The elucidation of regulatory elements contributing to the molecular mechanism underlying the regulation of HOX11 gene expression is of great importance. Previous reports of HOX11 regulatory elements mainly focused on the 5'-flanking region of HOX11 on the chromosome related to transcriptional control. To expand the search of putative cis-elements involved in HOX11 regulation at the post-transcriptional level, we analyzed HOX11 mRNA 3'-untranslated region (3'UTR) and found an AU-rich region. To characterize this AU-rich region, in vitro analysis of HOX11 mRNA 3'UTR was performed with human RNA-binding protein HuR, which interacts with AU-rich element (ARE) existing in the 3'UTR of many growth factors' and cytokines' mRNAs. Our results showed that the HOX11 mRNA 3'UTR can specifically bind with human HuR protein in vitro. This specific binding could be competed effectively by typical ARE containing RNA. After the deletion of the AU-rich region present in the HOX11 mRNA 3'UTR, the interaction of HOX11 mRNA 3'UTR with HuR protein was abolished. These findings suggest that HOX11 mRNA 3'UTR contains cis-acting element which shares similarity in the action pattern with RE-HuR interactions and may involve in the post-transcriptional regulation of the HOX11 gene.

Butyrate and taurine exert a mitigating effect on the inflamed distal intestine of European sea bass fed with a high percentage of soybean meal

  • Rimoldi, Simona;Finzi, Giovanna;Ceccotti, Chiara;Girardello, Rossana;Grimaldi, Annalisa;Ascione, Chiara;Terova, Genciana
    • Fisheries and Aquatic Sciences
    • /
    • 제19권10호
    • /
    • pp.40.1-40.14
    • /
    • 2016
  • Background: Due to the paucity of oceanic resources utilized in the preparation of diets for cultured fish, commercial feed producers have been trying to replace fishmeal (FM) using alternative protein sources such as vegetable protein meals (VMs). One of the main drawbacks of using VMs in fish feed is related to the presence of a variety of anti-nutritional factors, which could trigger an inflammation process in the distal intestine. This reduces the capacity of the enterocytes to absorb nutrients leading to reduced fish growth performances. Methods: We evaluated the mitigating effects of butyrate and taurine used as feed additives on the morphological abnormalities caused by a soybean meal (SBM)-based diet in the distal intestine of sea bass (Dicentrarchus labrax). We used three experimental diets, containing the same low percentage of FM and high percentage of SBM; two diets were supplemented with either 0.2% sodium butyrate or taurine. Histological changes in the intestine of fish were determined by light and transmission electron microscopy. Infiltration of $CD45^+$ leucocytes in the lamina propria and in the submucosa was assessed by immunohistochemistry. We also quantified by One-Step Taqman$^{(R)}$ real-time RT-PCR the messenger RNA (mRNA) abundance of a panel of genes involved in the intestinal mucosa inflammatory response such as $TNF{\alpha}$ (tumor necrosis factor alpha) and interleukins: IL-8, IL-$1{\beta}$, IL-10, and IL-6. Results: Fish that received for 2 months the diet with 30% soy protein (16.7% SBM and 12.8% full-fat soy) developed an inflammation in the distal intestine, as confirmed by histological and immunohistochemistry data. The expression of target genes in the intestine was deeply influenced by the type of fish diet. Fish fed with taurine-supplemented diet displayed the lowest number of mRNA copies of IL-$1{\beta}$, IL-8, and IL-10 genes in comparison to fish fed with control or butyrate-supplemented diets. Dietary butyrate caused an upregulation of the $TNF{\alpha}$ gene transcription. Among the quantified interleukins, IL-6 was the only one to be not influenced by the diet. Conclusions: Histological and gene expression data suggest that butyrate and taurine could have a role in normalizing the intestinal abnormalities caused by the SBM, but the underling mechanisms of action seem different.

Expression of the Proto-oncogene Pokemon in Colorectal Cancer - Inhibitory Effects of an siRNA

  • Zhao, Gan-Ting;Yang, Li-Juan;Li, Xi-Xia;Cui, Hui-Lin;Guo, Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.4999-5005
    • /
    • 2013
  • Objective: This study aimed to investigate expression of the proto-oncogene POK erythroid myeloid ontogenic factor (Pokemon) in colorectal cancer (CRC), and assess inhibitory effects of a small interference RNA (siRNA) expression vector in SW480 and SW620 cells. Methods: Semi-quantitative reverse transcription-polymerase chain reaction (PCR) and immunohistochemistry were performed to determine mRNA and protein expression levels of Pokemon in CRC tissues. Indirect immunofluorescence staining was applied to investigate the location of Pokemon in SW480 and SW620 cells. The siRNA expression vectors that were constructed to express a short hairpin RNA against Pokemon were transfected to the SW480 and SW620 cells with a liposome. Expression levels of Pokemon mRNA and protein were examined by real-time quantitative-fluorescent PCR and western blot analysis. The effects of Pokemon silencing on proliferation of SW480 and SW620 cells were evaluated with reference to growth curves with MTT assays. Results: The mRNA expression level of Pokemon in tumor tissues ($0.845{\pm}0.344$) was significantly higher than that in adjacent tumor specimens ($0.321{\pm}0.197$). The positive expression ratio of Pokemon protein in CRC (87.0%) was significantly higher than that in the adjacent tissues (19.6%). Strong fluorescence staining of Pokemon protein was observed in the cytoplasm of the SW480 and SW620 cells. The inhibition ratios of Pokemon mRNA and protein in the SW480 cells were 83.1% and 73.5% at 48 and 72 h, respectively, compared with those of the negative control cells with the siRNA. In the SW620 cells, the inhibition ratios of Pokemon mRNA and protein were 76.3% and 68.7% at 48 and 72 h, respectively. MTT showed that Pokemon gene silencing inhibited the proliferation of SW480 and SW620 cells. Conclusion: Overexpression of Pokemon in CRC may have a function in carcinogenesis and progression. siRNA expression vectors could effectively inhibit mRNA and protein expression of Pokemon in SW480 and SW620 cells, thereby reducing malignant cell proliferation.

Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model

  • Kim, Dae-Won;Hwang, Hyun-Sook;Kim, Duk-Soo;Sheen, Seung-Hoon;Heo, Dong-Hwa;Hwang, Gyo-Jun;Kang, Suk-Hyung;Kweon, Hae-Yong;Jo, You-Young;Kang, Seok-Woo;Lee, Kwang-Gill;Park, Kye-Won;Han, Kyu-Hyung;Park, Jin-Seu;Eum, Won-Sik;Cho, Yong-Jun;Choi, Hyun-Chul;Choi, Soo-Young
    • BMB Reports
    • /
    • 제44권12호
    • /
    • pp.787-792
    • /
    • 2011
  • We investigated whether silk fibroin peptide derived from the silkworm, Bombyx mori, could inhibit inflammation and enhance the anti-inflammatory activity of Tat-superoxide dismutase (Tat-SOD), which was previously reported to effectively penetrate various cells and tissues and exert anti-oxidative activity in a mouse model of inflammation. Inflammation was induced by topical treatment of mouse ears with 12-O-tetradecanoylphorbol-13-acetate (TPA). Histological, Western blot, and reverse transcription-polymerase chain reaction data demonstrated that silk fibroin peptide or Tat-SOD alone could suppress elevated levels of cyclooxygenase-2, interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha induced by TPA. Moreover, silk fibroin peptide significantly enhanced the anti-inflammatory activity of Tat-SOD, although it had no influence on in vitro and in vivo transduction of Tat-SOD. Silk fibroin peptide exhibited anti-inflammatory activity in a mice model of inflammation. Therefore, silk fibroin peptide alone or in combination with Tat-SOD might be used as a therapeutic agent for various inflammatory diseases.