• Title/Summary/Keyword: Trans-Impedance Amplifier

Search Result 8, Processing Time 0.024 seconds

Design of Low-power Regulated Cascode Trans-impedance Amplifier for photonic bio sensor system (광 바이오 센서 시스템을 위한 RGC 기법의 저전럭 전치증폭기 설계)

  • Kim, Se-Hwan;Hong, Nam-Pyo;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.364-366
    • /
    • 2009
  • 광 바이오 센서 시스템에서 Trans-Impedance amplifier (TIA)는 광검출기로부터 입력단으로 들어오는 미세한 전기 신호를 원하는 신호레벨까지 증폭하는 역할을 한다. TIA는 광 바이오 센서 시스템의 감도 (sensitivity)를 결정하는 매우 중요한 회로로 저잡음, 저전력, 낮은 입력 임피던스 등의 특성이 요구되어진다. 본 논문에서는 광 바이오 센서 시스템에서 요구되어 지는 저전력, 저잡음 성능을 구현하기 위하여 regulated cascode (RGC) TIA를 설계하였다. 본 연구에서는 기존 common gate (CG) 기법의 TIA에서 전류원 역할을 하는 current source를 저항으로 대체하고, local feedback stage를 이용하는 RGC TIA를 저잡음, 저전력 특성 및 회로 면적 감소의 장점을 갖도록 설계하였다.

  • PDF

A 3.3-V Low-Power Compact Driver for Multi-Standard Physical Layer

  • Park, Joon-Young;Lee, Jin-Hee;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • A low-power compact driver for multistandard physical layer is presented. The proposed driver achieves low power and small area through the voltage-mode driver with trans-impedance configuration and the novel hybrid driver,. In the voltage-mode driver, a trans-impedance configuration alleviates the problem of limited common-mode range of error amplifiers and the area and power overhead due to pre-amplifier. For a standard with extended output swing, only current sources are added in parallel with the voltage-mode driver, which is named a 'hybrid driver'. The hybrid architecture not only increases output swing but reduces overall driver area. The overall driver occupies $0.14mm^2$. Power consumptions under 3.3-V supply are 24.5 mW for the voltage-mode driver and 44.5 mW for the hybrid driver.

Current-to-Voltage Converter Using Current-Mode Multiple Reset and its Application to Photometric Sensors

  • Park, Jae-Hyoun;Yoon, Hyung-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Using a current-mode multiple reset, a current-to-voltage(I-V) converter with a wide dynamic range was produced. The converter consists of a trans-impedance amplifier(TIA), an analog-to-digital converter(ADC), and an N-bit counter. The digital output of the I-V converter is composed of higher N bits and lower bits, obtained from the N-bit counter and the ADC, respectively. For an input current that has departed from the linear region of the TIA, the counter increases its digital output, this determines a reset current which is subtracted from the input current of the I-V converter. This current-mode reset is repeated until the input current of the TIA lies in the linear region. This I-V converter is realized using 0.35 ${\mu}m$ LSI technology. It is shown that the proposed I-V converter can increase the maximum input current by a factor of $2^N$ and widen the dynamic range by $6^N$. Additionally, the I-V converter is successfully applied to a photometric sensor.

A Flip Chip Packaged 40 Gb/s InP HBT Transimpedance Amplifier (플립칩 패키지된 40Gb/s InP HBT 전치증폭기)

  • Ju, Chul-Won;Lee, Jong-Min;Kim, Seong-Il;Min, Byoung-Gue;Lee, Kyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.183-184
    • /
    • 2007
  • A 40 Gb/s transimpedance amplifier IC was designed and fabricated with a InP/InGaAs HBTs technology. In this study, we interconnect 40Gbps trans impedance amplifier IC to a duroid substrate by a flip chip bonding instead of conventional wire bonding for interconnection. For flip chip bonding, we developed fine pitch bump with the $70{\mu}m$ diameter and $150{\mu}m$ pitch using WLP process. To study the effect of WLP, electrical performance was measured and analyzed in wafer and package module using WLP. The Small signal gains in wafer and package module were 7.24 dB and 6.93dB respectively. The difference of small signal gain in wafer and package module was 0.3dB. This small difference of gain is due to the short interconnection length by bump. The characteristics of return loss was under -10dB in both wafer and module. So, WLP process can be used for millimeter wave GaAs MMIC with the fine pitch pad and duroid substrate can be used in flip chip bonding process.

  • PDF

Wideband Receiver Module for LADAR Using Large Area InGaAs Avalanche Photodiode (대면적 APD를 이용한 LADAR용 광대역 광수신기)

  • Park, Chan-Yong;Kim, Dug-Bong;Kim, Chung-Hwan;Kwon, Yongjoon;Kang, EungCheol;Lee, Changjae;Choi, Soon-Gyu;La, Jongpil;Ko, Jin Sin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we report design, fabrication and characterization of the WBRM (Wide Band Receiver Module) for LADAR (LAser Detection And Ranging) application. The WBRM has been designed and fabricated using self-made APD (Avalanche Photodiode) and TIA (Trans-impedance Amplifier). The APD and TIA chips have been integrated on 12-pin TO8 header using self-made ceramic submount and circuit. The WBRM module showed 450 ps of rise time, and corresponding 780 MHz bandwidth. Furthermore, it showed very low output noise less than 0.8 mV, and higher SNR than 15 for 150 nW of MDS(Minimum Detectable Signal). To the author's knowledge, this is the best performance of an optical receiver module for LIDAR fabricated by 200 um InGaAs APD.

Implementation of Data Transmission System Using PSD Sensor and Laser Diode Module (PSD 센서와 Laser를 이용한 데이터 전송 시스템 구현)

  • Kim, Myung-Hwan;Ma, Keun-Su;Lee, Jae-Deuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3016-3018
    • /
    • 2005
  • The PSD(Position Sensitive Detector) is a sensor for detecting the position of incident light. Because of its various advantages, it is used for position and angle sensing, optical range finders, laser displacement sensing, and etc. In the previous study of the position finding system, the laser tracking robot is developed. Small data rate and unidirectionality is the characteristics of data communication both DSP-based pan/tilt control board and the robot. If we can transmit data to the target using PSD sensor and laser diode module, there is no need for communication devices such as the bluetooth and wireless module. For this reason, this paper presents the new method for data transmission. Transmit data using RS-232 is modulated by a VTF(Voltage To Frequency) converter The laser diode module transmits the modulated data. And then the PSD sensor receive that data. Demodulation process is accomplished by the system which is consisted with trans-impedance amplifier, FTV(Frequency To Voltage) converter, and etc.

  • PDF

The Micro Pirani Gauge with Low Noise CDS-CTIA for In-Situ Vacuum Monitoring

  • Kim, Gyungtae;Seok, Changho;Kim, Taehyun;Park, Jae Hong;Kim, Heeyeoun;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.733-740
    • /
    • 2014
  • A resistive micro Pirani gauge using amorphous silicon (a-Si) thin membrane is proposed. The proposed Pirani gauge can be easily integrated with the other process-compatible membrane-type sensors, and can be applicable for in-situ vacuum monitoring inside the vacuum package without an additional process. The vacuum level is measured by the resistance changes of the membrane using the low noise correlated double sampling (CDS) capacitive trans-impedance amplifier (CTIA). The measured vacuum range of the Pirani gauge is 0.1 to 10 Torr. The sensitivity and non-linearity are measured to be 78 mV / Torr and 0.5% in the pressure range of 0.1 to 10 Torr. The output noise level is measured to be $268{\mu}V_{rms}$ in 0.5 Hz to 50 Hz, which is 41.2% smaller than conventional CTIA.

Development and Performance Estimation of Wide-ranged Fine Current Module for NPP Instrumentation (원전 계측용 광범위 미세전류모듈의 개발 및 성능평가)

  • Kim, Jong-ho;Chang, Hong-ki;Che, Gyu-shik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.482-489
    • /
    • 2016
  • Detection of gamma ray can be available using optical fiber scintillator under radiation environment. It monitors the transfer energies of these ions by photodiodes and then convertes into currents. The module which converts those currents into voltages and processes signals is named fine current module TIA, and it is essentially important to convert currents into voltages with high linearity. We have studied and developed the TIA, improving converting linearity and minimizing noises and off-set voltages. Also, we have made efforts to develop precise and accurate current module in compliance with concerned requirements. First of all, we established developing theory, developed related circuits, and then made the current module. And, we confirmed its stability and linearity to be more excellent than any other equipment proposed by other references. We tested the developed fine current modules in the real radiation environment under authorized supervising, confirmed them to meet related requirements.