Browse > Article
http://dx.doi.org/10.3807/KJOP.2013.24.1.001

Wideband Receiver Module for LADAR Using Large Area InGaAs Avalanche Photodiode  

Park, Chan-Yong (Optical Communication Research Lab., Wooriro OTC)
Kim, Dug-Bong (Optical Communication Research Lab., Wooriro OTC)
Kim, Chung-Hwan (Optical Communication Research Lab., Wooriro OTC)
Kwon, Yongjoon (Agency for Defense Development)
Kang, EungCheol (Agency for Defense Development)
Lee, Changjae (Agency for Defense Development)
Choi, Soon-Gyu (Samsung Thales Co. Ltd.)
La, Jongpil (Samsung Thales Co. Ltd.)
Ko, Jin Sin (Samsung Thales Co. Ltd.)
Publication Information
Korean Journal of Optics and Photonics / v.24, no.1, 2013 , pp. 1-8 More about this Journal
Abstract
In this paper, we report design, fabrication and characterization of the WBRM (Wide Band Receiver Module) for LADAR (LAser Detection And Ranging) application. The WBRM has been designed and fabricated using self-made APD (Avalanche Photodiode) and TIA (Trans-impedance Amplifier). The APD and TIA chips have been integrated on 12-pin TO8 header using self-made ceramic submount and circuit. The WBRM module showed 450 ps of rise time, and corresponding 780 MHz bandwidth. Furthermore, it showed very low output noise less than 0.8 mV, and higher SNR than 15 for 150 nW of MDS(Minimum Detectable Signal). To the author's knowledge, this is the best performance of an optical receiver module for LIDAR fabricated by 200 um InGaAs APD.
Keywords
InGaAs APD; LIDAR; LADAR; Avalanche photodiode; Light detection and ranging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 http://en.wikipedia.org/wiki/LIDAR.
2 http://en.wikipedia.org/wiki/Time-of-flight_camera#cite_note-16.
3 http://www.advancedscientificconcepts.com/products/overview.html.
4 M. Juberts and A. Barbera, "Status report on next generation LADAR for driving unmanned ground vehicles," Proc. SPIE 5609, 1-12 (2004).
5 R. Sudharsanan, P. Yuan, J. Boisvert, P. McDonald, T. Isshiki, S. Mesropian, E. Labios, and M. Salisbury, "Single photon counting geiger mode InGaAs(P)/InP avalanche photodiode arrays for 3D imaging," Laser Radar Technology and Applications XIII, M. D. Turner and G. W. Kamerman, ed., Proc. SPIE 6950, 69500N (2008).
6 R. M. Marino, T. S. Stephenes, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, "A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements," Laser Radar Technology and Applications VIII, G. W. Kamerman, ed., Proc. SPIE 5086, 1-15 (2003).
7 http://velodynelidar.com/lidar/lidar.aspx.
8 T. H. Ngo, C. H. Kim, Y. J. Kwon, J. S. Ko, D. B. Kim, and H. H. Park, "Wideband receiver for a three-dimensional ranging LADAR system," to be published in IEEE Transactions on Circuit and System II (2012).
9 C. Y. Park, K. S. Hyun, J. S. Kim, S. G. Kang, M. K. Song, E. S. Nam, and H. M. Kim, "Analysis of avalanche gain with multiplication layer width and application to floating guard ring avalanche photodiode," Inst. Phys. Conf., Ser. No145: Compound Semiconductors 1995, J. C. Woo and Y. S. Park, ed. (IOP Publishing Ltd., Bristol and Philadelphia, 1995), pp. 1125-1128.
10 C. Y. Park, K. S. Hyun, S. G. Kang, and H. M. Kim, "Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode," Appl. Phys. Lett. 67, 3789-3791 (1995).   DOI
11 K. S. Hyun and C. Y. Park, "Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure," J. Appl. Phys. 81, 974-984 (1997).   DOI   ScienceOn
12 S. R. Forrest, "Avalanche photodetector receiver sensitivity," Chapt. 4 in Semiconductors and Semimetals, 22 part D, W. T. Tsang, ed. (Academic press, Homdel NJ, USA, 1985).