• 제목/요약/키워드: Train Loading

검색결과 178건 처리시간 0.03초

한국형틸팅열차 틸팅기구장치 부하특성 평가 연구(II) - 대차/차체 인터페이스 조정에 의한 정적부하 영향분석 (Study for Loading Characteristic of Tilting Mechanism on Korea Tilting Train (II) - Adjustmemt for Interface of carbody and Bogie)

  • 고태환;이왕상;이범상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.951-956
    • /
    • 2011
  • As the evaluation of loading characteristic on tilting mechanism is the most important one of the function test of tilting mechanism, the changing characteristic of load must be investigated on tilting of carbody for both the static and running condition of train. In this study, we reduced the load of tilting mechanism by adjusting the interface of carbody and bogie such as the weight balance, level of underframe, height of leveling valve, height of axle box and center position of tilting actuator with the characteristic curve of load for optimal condition of the tilting mechanism obtained in the previous study. Furthermore, the factor and effect of the interfacial structures respecting the load of tilting mechanism was evaluated by analyzing the changing characteristic of load obtained in the process of adjustment of interfaces. From these data, we will propose the maintenance standards for interfacial structures and tilting mechanism in order to minimize the load of tilting mechanism by analyzing in detail the characteristic of load for the main factors of the interfacial structure effecting on the load of tilting mechanism.

  • PDF

포화도 변화에 따른 슬래브궤도 혼합성토 노반의 침하 특성 (Settlement characteristics of rock/soil mixture subgrade of slab track with variation of degree of saturation)

  • 박성용;김대상
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1506-1512
    • /
    • 2010
  • 산악지형이 많은 지역에서의 고속철도 건설에는 노선의 선형상의 이유로 터널구간이 많이 존재하며, 터널 건설로 발생하는 암버럭을 유용하기 위하여 노반 건설은 주로 암과 흙의 혼합성토로 이루어지고 있다. 본 연구에서는 이암을 주암으로 하는 혼합토로 이루어진 고속철도 노반의 열차반복하중에 의한 침하특성을 분석하기 위하여 모형토조 실험을 수행하였다. 특히 강우 또는 지하수위 상승에 의한 노반의 포화도 증가가 열차 반복하중 작용 시 노반의 침하특성에 미치는 영향을 분석하기 위하여 초기 포화도 조건을 변화시키면서 실험을 수행하였다. 실험결과, 낮은 포화도 조건에서는 열차반복횟수가 증가할수록 침하가 어느 일정 값에 수렴하는 결과를 나타냈으나, 일정 수준 이상의 포화도 조건에서는 침하가 급격히 증가하는 것을 알 수 있었다. 따라서 노반의 포화도를 일정수준 이하로 관리하는 것이 침하 예방에 중요한 요소임을 확인 할 수 있었다.

  • PDF

실대형 재하시험을 통한 슬래브궤도 노반의 연직토압 평가 (Assessment for Vertical Earth Pressure of Roadbeds Applied to Slab Track Structure by Real-scale Loading Tests)

  • 이태희;이진욱;원상수;이성혁
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2057-2063
    • /
    • 2011
  • Recently, concrete slab track is mostly used to satisfy requirements for safety of high-speed train operation and economical efficiency of maintenance. Due to structural characteristics of ballast track structures, roadbeds under the ballast experience a state of high stress. In case of slab track structures, however, its roadbeds place on a condition of low stress less than roadbeds of ballast track structures as increasing of the loading area. In this study, vertical earth pressure under slab track structures was investigated through real-scale loading tests and theoretical analysis to compare with each other.

  • PDF

고속전철용 대차프레임의 다축피로해석에 관한 연구 (A Study on the Multiaxial Fatigue Analysis of Bogie Frame for High Speed Train)

  • 이상록;이학주;한승우;강재윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.344-351
    • /
    • 1999
  • Stress analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC (International Union of Railways) Code 615-4. Multiaxial fatigue damage models such as signed von Mises method and typical critical plane theories were reviewed, and multiaxial fatigue analysis program (MUFAP) has been developed. Fatigue analysis of bogie frame under multiaxial loading was performed by using MUFAP and finite element analysis results. The procedure developed in this study is considered to be useful for the life prediction in preliminary design stage of railway components under multiaxial loading conditions. 3-dimensional surface modeling, mesh generation and finite element analysis were performed by Pro-Engineer, MSC/PATRAN and MSC/NASTRAN, respectively, which were installed in engineering workstation.

  • PDF

궤도-교량의 상호작용에 대한 하중이력의 영향 (The Loading History Effect on the Track-bridge Interaction)

  • 윤경민;한상윤;황만호;김해곤;임남형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3156-3159
    • /
    • 2011
  • In case of the continuous welded rail(CWR) track is supported by the railway bridge, the additional axial force is occurred in the CWR due to the track-bridge interaction. In the various design codes such as Korean code, European code, UIC code, etc, three important loads(temperature variation in the bridge-deck, braking/acceleration and the bending of the bridge-deck resulted from the passing train) are treated as the independent loading case. In other words, the additional axial force can be obtained by summing up the three different values calculated by the three independent analysis. However, this analysing method may have an error because the behavior of the longitudinal resistance between the rail and the bridge-deck is under the highly nonlinear. Therefore, in order to exactly analyse the track-bridge interaction, nonlinear loading history and the change of the longitudinal resistance owing to the loading history must be considered in the analysis process. In this study, the loading history effect on the track-bridge interaction is investigated considering the resonable combination of three loads and the longitudinal resistance change.

  • PDF

A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading

  • Liu, Huabei;Yang, Guangqing;Wang, He;Xiong, Baolin
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.579-593
    • /
    • 2017
  • Geosynthetic reinforced soil retaining walls can be employed as railway embankments to carry large static and dynamic train loads, but very few studies can be found in the literature that investigate their dynamic behavior under simulated wheel loading. A large-scale dynamic test on a reinforced soil railway embankment was therefore carried out. The model embankment was 1.65 meter high and designed to have a soilbag facing. It was reinforced with HDPE geogrid layers at a vertical spacing of 0.3 m and a length of 2 m. The dynamic test consisted of 1.2 million cycles of harmonic dynamic loading with three different load levels and four different exciting frequencies. Before the dynamic loading test, a static test was also carried out to understand the general behavior of the embankment behavior. The study indicated the importance of loading frequency on the dynamic response of reinforced soil railway embankment. It also showed that toe resistance played a significant role in the dynamic behavior of the embankment. Some limitations of the test were also discussed.

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

모사 열차하중 재하에 따른 쇄석강화노반의 침하특성 (Settlement Characteristics of the Reinforced Railroad Roadbed with Crushed Stones Under a Simulated Train Loading)

  • Hwang, Seon-Keun
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.5-13
    • /
    • 2004
  • 기존의 흙을 사용하여 건설된 철도 노반은 반복적인 교통하중의 증가, 열차속도의 향상, 노반상으로의 지하수의 유입, 노반의 배수능력 저하 등의 이유로 인해 시간경과에 따라 쉽게 그 기능을 상실할 수 있다. 본 연구에서는 실대형시험과 수치해석을 수행함으로씨 철도노반으로서의 쇄석강화노반의 성능을 평가하였다. 쇄석강화노반의 탄$.$소성 연직변위는 모사열차하중의 재하횟수에 관계없이 일반 흙노반에 비해 작은 응답특성을 보였으며, 동일한 노반 부설두께에서는 노반반력계수의 증가에 따라 감소하며, 동일한 강성인 경우 노반 부설두께 증가에 따라 감소하는 경향을 보였다. 하지만, 쇄석강화노반의 부설두께에 비해 노반의 강성이 궤도에 발생하는 전체 소성 연직변위에 더욱 큰 영향을 미치는 것으로 평가되었다.

Development of an Imaging Based Gang Protection System

  • Grimm, M.;Pelz, M.
    • International Journal of Railway
    • /
    • 제1권4호
    • /
    • pp.149-156
    • /
    • 2008
  • During maintenance or construction works in or at the tracks of railways, high risks for passengers and railway staff, especially for the workers on the construction site exist. The high risks result out of the movement of rail vehicles, like trains or construction vehicles, which must be faced by using any available technical and operational technologies for securing them against the environment. Therefore, it is necessary to evaluate the level of protection continuously and to identify new and innovative methods and technologies for the protection of the gang (construction worker, machines and material). Especially on construction sites at line sections with two or more parallel tracks but also with single tracks, there are still a lot of incidents and accidents mostly with seriously injured persons or fatalities. These were mainly gang members that breach the railway-loading gage. By using proper warning or protection systems, the avoidance of such accidents must be achieved. The latest developments. in gang protection systems concern on the one hand fixed barriers in the middle between the construction site and the operated track and on the other hand construction vehicles equipped with automatic warning systems. The disadvantage of such protection methods is that the gang can be warned against an approaching train but a monitoring of the gang members cannot be performed. Only one part of a potential dangerous situation will be detected. If the gang members will overhear the acoustic warning signal of the security staff and the workers will not leave the danger zone in the track, the driver of the approaching train had no chance to react to the dangerous situation. An accident is often inevitable. While the detection of acoustic warning signals by the gang members working on a construction site is very difficult, the acoustical planning of an automatic warning system has to be designed for an acoustic short range level of one meter besides the construction vehicle. The decision about the use of today's technical warning system (fixed systems, automatic warning systems, etc.) must be geared to the technical feasibility and the level of safety which is needed. Criteria for decision guidance to block a track should be developed by danger estimation and economical variables. To realize the actual jurisdiction and to minimize the hazards of railway operations by the use of construction vehicles near the tracks further developments are needed. This means, that the warning systems have to be enhanced to systems for protection, which monitor the realization of the warning signal as a precondition for giving a movement authority to a train. This method can protect against accidents caused by predictable wrongdoing. The actual state of the art technique of using a collective warning combined with additional security staff is no longer acceptable. Therefore, the Institute of Transportation System of the German Aerospace Center in Braunschweig (Germany) will develop a gang warning and protection system based upon imaging methods, with optical sensors such as video in visible and invisible ranges, radar, laser, and other. The advantage of such a system based on the possibility to monitor both the gang itself and the railway-loading gauge either of the parallel track or of the same track still in use. By monitoring both situations, the system will be able to generate a warning message for the approaching train, that there are obstacles in the track, so that the train can be stopped to prevent an accident. And also the gang workers will be warned, while they breach their area.

  • PDF

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.