DOI QR코드

DOI QR Code

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Yu Jia (School of Civil Engineering, Central South University) ;
  • Zhongling Zong (School of Civil and Ocean Engineering, Jiangsu Ocean University) ;
  • Xuan Wang (School of Civil Engineering, Central South University) ;
  • Jiasheng Zhang (School of Civil Engineering, Central South University) ;
  • Min Ni (School of Civil and Ocean Engineering, Jiangsu Ocean University)
  • Received : 2023.06.07
  • Accepted : 2023.11.23
  • Published : 2023.12.25

Abstract

The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

Keywords

Acknowledgement

The study was supported by the National Natural Science Foundation of China (51978674), Science and Technology Research and Development Program of China National Railway Group Corporation Limited (L2022G002), and Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (202311641122Y). The laboratory tests were performed in the National Engineering Research Center of High-speed Railway Construction Technology with significant support from Dr. Zhang of Central South University. The authors are grateful for the anonymous reviewers for their constructive comments and suggestions.

References

  1. Alshibli, K.A. and Hasan, A. (2008), "Spatial variation of void ratio and shear band thickness in sand using X-ray computed tomography", Geotechnique, 58(4), 249-257. https://doi.org/10.1680/geot.2008.58.4.249.
  2. Bian, X.C., Jiang, J.Q., Jin, W.F., Sun, D.D., Li, W. and Li, X.M. (2016), "Cyclic and postcyclic triaxial testing of ballast and subballast", J. Mater. Civil Eng., 28(7), 04016032. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001523.
  3. Chawla, S. and Shahu, J.T. (2016), "Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: Numerical analysis", Geotext. Geomembranes, 44(3), 344-357. https://doi.org/10.1016/j.geotexmem.2016.01.006.
  4. Chen, B., Sun, D.A. and Jin, P. (2019), "Experimental study of the effect of microstructure on the permeability of saturated soft clays", Geomech. Eng., 18(1), 49-58. https://do.org/10.12989/gae.2019.18.1.049.
  5. Ding, Y., Jia, Y., Wang, X., Zhang, J.S., Luo, H., Zhang, Y. and Chen, X.B. (2022a), "The characteristics of subgrade mud pumping under various water level conditions", Geomech. Eng., 30(2), 201-210. https://doi.org/10.12989/gae.2022.30.2.201.
  6. Ding, Y., Jia, Y., Wang, X., Zhang, J.S., Chen, X.B., Luo, H. and Zhang, Y. (2022b), "Influence of particle size distribution and initial dry density on the characteristics of subgrade mud pumping", Rock Soil Mech., 43(9), 2539-2549. https://doi.org/10.16285/j.rsm.2021.1971.
  7. Dumberry, K., Duhaime, F. and Ethier, Y.A. (2018), "Erosion monitoring during core overtopping using a laboratory model with digital image correlation and X-ray microcomputed tomography", Can. Geotech. J., 55(2), 234-245. https://doi.org/10.1139/cgj-2016-0684.
  8. Hall, S.A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G. and Besuelle, P. (2010), "Discrete and continuum analysis of localised deformation in sand using X-ray CT and volumetric digital image correlation", Geotechnique, 60(5), 315-322. https://doi.org/10.1680/geot.2010.60.5.315.
  9. Hamamoto, S., Moldrup, P., Kawamoto, K., Sakaki, T., Nishimura, T. and Komatsu, T. (2016), "Pore network structure linked by X-ray CT to particle characteristics and transport parameters", Soils Found., 56(4), 676-690. https://doi.org/10.1016/j.sandf.2016.07.008.
  10. Hussaini, S.K.K., Indraratna, B. and Vinod, J.S. (2016), "A laboratory investigation to assess the functioning of railway ballast with and without geogrids", Transport. Geotech., 6, 45-54. https://doi.org/10.1016/j.trgeo.2016.02.001.
  11. Indraratna, B., Ngo, N.T. and Rujikiatkamjorn, C. (2011), "Behavior of geogrid-reinforced ballast under various levels of fouling", Geotext. Geomembranes, 29(3), 313-322. https://doi.org/10.1016/j.geotexmem.2011.01.015.
  12. Indraratna, B., Rujikiatkamjorn, C., Ewers, B. and Adams, M. (2010), "Class A prediction of the behavior of soft estuarine soil foundation stabilized by short vertical drains beneath a rail track", J. Geotech. Geoenviron. Eng., 136, 686-696. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000270.
  13. Jiang, J.S., Lin, C., Cheng, Z.L. and Zuo, Y.Z. (2019), "Investigation of macroscopic and microscopic behavior of gravels using triaxial compression test with CT scan", J. Test. Eval., 47(6), 15. https://doi.org/10.1520/JTE20180547.
  14. Kim, H., Anderson, S.H., Motavalli, P.P. and Gantzer, C.J. (2010), "Compaction effects on soil macropore geometry and related parameters for an arable field", Geoderma, 160(2), 244-251. https://doi.org/10.1016/j.geoderma.2010.09.030.
  15. Leng, W.M., Su, Y., Teng, J.D., Nie, R.S. and Zhao, C.Y. (2018), "Analysis and evaluation on physical characteristics of fine-grained soils prone to mud pumping", J. China Railway Soc., 40(1), 116-122. https://doi.org/10.3969/j.issn.1001-8360.2018.01.018.
  16. Mukunoki, T., Miyata, Y., Mikami, K. and Shiota, E. (2016), "X-ray CT analysis of pore structure in sand", Solid Earth, 7(3), 929-942. https://doi.org/10.5194/se-7-929-2016.
  17. Nagrale, P.P. and Patil, A.P. (2017), "Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response", Geomech. Eng., 12(2), 257-267. https://doi.org/10.12989/gae.2017.12.2.257.
  18. Nguyen, C.D., Benahmed, N., Ando, E., Sibille, L. and Philippe, P. (2019), "Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography", Acta Geotechnica, 14, 749-765. https://doi.org/10.1007/s11440-019-00787-w.
  19. Nguyen, T.T., Indraratna, B., Kelly, R., Phan, N.M. and Haryono, F. (2019), "Mud pumping under railtracks: mechanisms, assessments and solutions", Australian Geomech. J., 54(4), 59-80.
  20. Nie, R.S., Leng, W.M., Su, Y. and Guo, Y.P. (2018), "Physical and mechanical properties of mud pumping soils in railway subgrade bed", J. Southwest Jiaotong Univ., 53(2), 286-295. https://doi.org/10.3969/j.issn.0258-2724.2018.02.010.
  21. Romero, E. and Simms, P.H. (2008), "Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy", J. Geotech. Geol. Eng., 26(6), 705-727. https://doi.org/10.1007/s10706-008-9204-5.
  22. Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. http://doi.org/10.12989/gae.2013.5.3.263.
  23. Singh, R.P., Nimbalkar, S., Singh, S. and Choudhury, D. (2020), "Field assessment of railway ballast degradation and mitigation using geotextile", Geotext. Geomembranes, 48(3), 275-283. https://doi.org/10.1016/j.geotexmem.2019.11.013.
  24. Sun, Q.D., Indraratna, B. and Nimbalkar, S. (2016), "Deformation and degradation mechanisms of railway ballast under high frequency cyclic loading", J. Geotech. Geoenviron. Eng., 142(1), 04015056. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001375.
  25. Tang, C.S., Shi, B., Gao, W., Chen, F.J. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
  26. Tang, L.S., Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. http://doi.org/10.12989/gae.2018.16.2.113.
  27. Trani, L.D.O. and Indraratna, B. (2010a), "Assessment of subballast filtration under cyclic loading", J. Geotech. Geoenviron. Eng., 136(11), 1519-1528. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000384.
  28. Trani, L.D.O. and Indraratna, B. (2010b), "Experimental investigations into subballast filtrations behaviour under cyclic conditions", Australian Geomech., 45(3), 123-133.
  29. Wang, J.D., Li, P., Ma, Y., Vanapalli, S.K. and Wang, X.G. (2020), "Change in pore-size distribution of collapsible loess due to loading and inundating", Acta Geotechnica, 15(3), 1081-1094. https://doi.org/10.1007/s11440-019-00815-9.
  30. Wang, Y. and Wang, Y.L. (2017), "Liquefaction characteristics of gravelly soil under cyclic loading with constant strain amplitude by experimental and numerical investigations", Soil Dyn. Earthq. Eng., 92, 388-396. https://doi.org/10.1016/j.soildyn.2016.10.029.
  31. Watanabe, Y., Lenoir, N., Otani, J. and Nakai, T. (2012), "Displacement in sand under triaxial compression by tracking soil particles on X-ray CT data", Soils Found., 52(2), 312-320. https://doi.org/10.1016/j.sandf.2012.02.008.
  32. Yang, Z.H., Yue, Z.R. and Tai, B.W. (2021), "Investigation of the deformation and strength properties of fouled graded macadam materials in heavy-haul railway subgrade beds", Constr. Build. Mater., 273, 121778. https://doi.org/10.1016/j.conbuildmat.2020.121778.
  33. Zhang, P.W. (2017), "Pore-structure model of geo-materials and micro-mechanics model for seepage", Ph.D. Dissertation, Tsinghua University, Beijing.