차종별 교통량 자료는 도로의 운영, 제어, 유지관리 계획 수립 및 과적차량 단속에도 매우 중요한 자료이다. 본 논문에서는 축검지 센서를 차량 진행방향에 대해서 경사지게 설치하고 이를 통해서 얻어지는 자료를 활용하여 차종분류 알고리즘을 개발하였다. 새로운 개발한 차종분류 알고리즘에서는 2축 차량에서 후륜 차량바퀴의 복륜 여부를 새로운 분류변수로 설정하였다. 분석대상이 차량은 1,878대로 CCTV를 활용하여 기록했으며 인력식 조사를 통하여 복륜여부와 차종을 구분하였다. 계측된 차량바퀴 접지면의 대각선 길이 성분의 크기를 입력 자료로 활용한 판별분석을 통하여 후륜바퀴가 복륜인지 단륜인지를 구분하였다. 복륜 여부만을 이용하여 차종분류를 했을 때, 차종분류의 정확도는 1종에 속하는 차량의 경우는 96.92%, 3종에 속하는 차량에서는 82.91% 그리고 4종에 속하는 차량에서는 79.13%에 이르는 것으로 분석되었다.
This paper proposes a prediction model of air traffic controller's take-off clearance under mixed mode runway operations. The proposed model has its purpose on the better prediction of the air traffic controller's clearance on take-offs of departure aircraft by considering various factors. For this purpose, support vector machine classification algorithm is used for the proposed model. The proposed model is applied to real air traffic operations to demonstrate its performances.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권12호
/
pp.4489-4501
/
2014
We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.
IP 스위칭은 IP 라우터의 성능을 개선시키기 위해 제안된 라우팅 기술이다. IP 스위칭에서 흐름 분류는 중요한 이슈 중에 하나이다. 보다 좋은 성능을 발휘하기 위해서 흐름 분류 방법은 다양하게 변화하는 IP 트래픽에 대하여 일치하도록 조절되어야 하며 IP 스위치는 가능한 많은 스위치의 하드웨어 자원을 사용해야 한다. 본 논문에서는 IP 스위칭에 대한 동적 흐름 분류 방법을 제안한다. 스위치에서 현재 사용되어지고 있는 하드웨어 스위칭 자원들에 따라서 제어 파라미터 값을 동적으로 조절함으로써 다양한 IP 트래픽에 대하여 기존의 방법보다 하드웨어 자원을 효율적으로 이용함으로써 U 스위치의 성능을 개선시킬 수 있다.
본 연구는 차종분류기법을 개발하여, 가장 일반적인 교통정보 수집장치인 루프검지기에 피에조타입의 축검지센서를 추가 설치하여 2006년 하반기 국토해양부에서 제시하고 있는 "통합12종 교통량조사 차종분류가이드"에 따라 차종을 12종으로 자동분류하고, 분류시 오분류를 최소화하는 방안을 목적으로 한다. 차종의 세분류를 위해 차종분류인자를 차량의 길이, 축간거리, 축형식, 각 축별 윤거, 윤형식으로 두고, 각 분류인자의 판독을 위해 루프센서와 축검지센서를 조합한 차종분류시스템을 구성하였다. 본 차종분류시스템에서는 원더링 기법을 적용하였다. 원더링 기법은 차량의 좌우 각 차륜의 횡방향 주행 패턴을 분석하는 것으로서 주행차량의 윤거, 윤형식 등이 판독가능하다. 본 시스템을 이용하여 약 한달간 실증분석을 실시하였으며, 총 교통량 762,420대를 자동분류한 결과 12종 분류로 분류되지 못한 차량이 47대로 전체의 0.006%로 나타났으며, 이는 분류결과를 통계적으로 활용함에 있어서 무시할 수 있는 정도의 높은 수준의 분류율을 나타내는 것이다. 본 시스템을 이용하여 실제 공용도로에서 확보한 신뢰성 높은 차종분류 데이터는 도로의 계획 및 설계, 도로 운영 등에 폭넓게 이용할 수 있으며, 도로 교통계획과 관리계획 수립을 위한 기초적 정보를 제공할 수 있다. 또한 도로 및 교통분야의 다양한 연구에 활용할 수 있는 중요한 자료가 될 것이다.
Su, Xin;Liu, Xuchong;Lin, Jiuchuang;He, Shiming;Fu, Zhangjie;Li, Wenjia
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권6호
/
pp.3230-3253
/
2017
Android malware steals users' private information, and embedded unsafe advertisement (ad) libraries, which execute unsafe code causing damage to users. The majority of such traffic is HTTP and is mixed with other normal traffic, which makes the detection of malware and unsafe ad libraries a challenging problem. To address this problem, this work describes a novel HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad library. This work designed AndroCollector, which can automatically execute the Android application (app) and collect the network traffic traces. From these traces, this work extracts HTTP traffic features along three important dimensions: quantitative, timing, and semantic and use these features for characterizing malware and unsafe ad libraries. Based on these HTTP traffic features, this work describes a supervised classification scheme for detecting malware and unsafe ad libraries. In addition, to help network operators, this work describes a fine-grained categorization method by generating fingerprints from HTTP request methods for each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP traffic traces collected from 10778 Android apps. The experimental results show that the scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy when tested on the popular third-party Android markets.
Korea is facing a surge in the aging population, showing that population aged 65 and above will be accounted for 42.5% of the total population in 2065 with the emphasis on the over-80 population consisting of 19.2%. In response to this abrupt change in population structure, the number of traffic fatality accident referring to older driver as aged 65+ years had been increasing from 605 fatalities in 2011 to 815 fatalities in 2015 resulting in increases in 34.7% in oppose to happening to decreases in 17.2% about non-older driver. With Logit analysis based on Newton-Raphson algorithm utilizing older driver's traffic fatality data for the 2011-2015 years, it was found that the likelihood of an accident resulting in a fatality for super older driver aged 80 years and above considerably increased compared to other older driver with aging classification: 2.24 times for violation of traffic lane, 2.04 times for violation of U-turn, 1.48 times for violation of safety distance, 1.35 times for violation of obstacle of passing; also average annual increase of traffic accident cost related to super older driver was fairly increased rather than other older driver groups. Hence, this study proposes that improving and amending transport safety system and Road Traffic Act for super older driver needs to be urgently in action about license management, safe driving education, etc. when considering the increase of over-80 population in the near future. Also, implementing a social agreement with all ages and social groups to apply with advanced driver assistance system for older driver groups will be able to become a critical factor to enhance safe driving over the face of the country.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.841-854
/
2020
The paper explains the method to process, analyze and predict traffic patterns in Los Angeles county using Big Data and Machine Learning. The dataset is used from a popular navigating platform in the USA, which tracks information on the road using connected users' devices and also collects reports shared by the users through the app. The dataset mainly consists of information about traffic jams and traffic incidents reported by users, such as road closure, hazards, accidents. The major contribution of this paper is to give a clear view of how the large-scale road traffic data can be stored and processed using the Big Data system - Hadoop and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using Business Intelligence and prediction with classification machine learning model on the sampled traffic data is presented using Azure ML. The process of modeling, as well as results, are interpreted using metrics: accuracy, precision and recall.
교통 표지 인식은 교통 관련 문제를 해결하는 데 중요한 역할을 한다. 교통 표지 인식 및 분류 시스템은 교통안전, 교통 모니터링, 자율주행 서비스 및 자율주행 차의 핵심 구성 요소이다. 휴대용 장치에 적용할 수 있는 경량 모델은 설계 의제의 필수 측면이다. 우리는 교통 표지 인식 시스템을 위한 잔여 블록이 있는 경량 합성곱 신경망 모델을 제안한다. 제안된 모델은 공개적으로 사용 가능한 벤치마크 데이터에서 매우 경쟁력 있는 결과를 보여준다.
도로분류체계는 도로의 기능 및 설계기준을 정의하기 위한 기초가 된다. 현재 우리나라에서는 도로의 소재지역, 도로의 기능 등 다양한 기준에 따라 도로를 구분하고 있다. 본 연구에서는 다양한 교통지표를 이용하여 일반국도를 분류하고, 도로 유형별 교통 특성을 규명하고자 하였다. 이를 위해 상시교통량 조사지점을 대상으로 다양한 교통지표를 이용하여 혼합모형을 통해 일반국도를 유형별로 분류하고 교통특성을 분석하였다.적용된 변수는 총 8개로 AADT(연평균 일교통량), $K_{30}$(설계시간 계수), 중차량 비율, 주간 교통량 비율, 첨두율, 일요일 계수, 휴가철 계수, 그리고 COV(변동계수)이다. 요인분석 결과 2개의 요인 즉, 교통량 변동 특성 요인(COV, $K_{30}$, 휴가철계수, 주간 교통량 비율, 일요일계수, 첨두율, AADT)과 중차량 및 방향별 특성 요인(중차량 비율, $D_{30}$)이 추출되었다. 306개 상시지점이 3개의 그룹으로 구분되며, 이에 대한 교통특성을 분석한 결과 그룹 I은 도시부도로, 그룹 II는 지방부도로, 그룹 III은 관광부도로로 판단된다. AADT는 도시부도로가 30,000대, 지방부도로가 16,000대, 그리고 관광부도로가 5,000대 수준인 것으로 분석된다. 그룹 III은 일요일과 휴가철의 평균 일교통량이 연평균 일교통량보다 매우 많은 전형적인 관광 위락 도로임을 알 수 있다. 시간대별 교통량 분석결과 평일 교통량 패턴은 그룹 I이 비교적 오전 및 오후 첨두현상이 강하게 나타나며, 그룹 II와 그룹 III은 첨두현상이 거의 나타나지 않는 것으로 분석된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.