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Abstract 

 
The paper explains the method to process, analyze and predict traffic patterns in Los Angeles 
county using Big Data and Machine Learning. The dataset is used from a popular navigating 
platform in the USA, which tracks information on the road using connected users’ devices and 
also collects reports shared by the users through the app. The dataset mainly consists of 
information about traffic jams and traffic incidents reported by users, such as road closure, 
hazards, accidents. The major contribution of this paper is to give a clear view of how the 
large-scale road traffic data can be stored and processed using the Big Data system - Hadoop 
and its ecosystem (Hive). In addition, analysis is explained with the help of visuals using 
Business Intelligence and prediction with classification machine learning model on the 
sampled traffic data is presented using Azure ML. The process of modeling, as well as results, 
are interpreted using metrics: accuracy, precision and recall.  
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1. Introduction 

It is known that US Governments turn to Advanced Traffic Management Systems in order to 
solve traffic congestions and adopt new transport management plans and utilize transport 
resources [1]. Unfortunately, major cities are still waiting for traffic to be resolved, where Los 
Angeles is ranked number one city in US with major problems in it [2]. City Departments are 
interested in improving traffic situation and therefore adopt information from popular 
navigation platforms in order to understand and analyze current situation. In our case City of 
Los Angeles provided traffic data set from one of the famous navigating app companies in the 
US for research purpose. In this paper we have conducted analysis of traffic jams in Los 
Angeles County area. 

Although traffic analysis attracts enough attention of researchers and predicting of traffic 
patterns is a goal for major businesses, prediction of road traffic can be divided into two major 
areas: short-term and long-term traffic prediction [3]. Short-term studies aim to predict traffic 
conditions using the real-time data, while car is driving, developing precise algorithms to 
capture speed and time for alternative routes and predicting road traffic several minutes to 
several hours ahead. Whereas, long-term studies dive into historical data and predict 
behavioral traffic conditions for weeks and months. In this paper we have covered long-term 
study and prediction of traffic patterns. 

2. Related Work 
A preliminary version of this paper was presented at the 14th Asia Pacific International 
Conference on Information Science and Technology (APIC-IST 2019) [4]. The updated 
version contains an improved traffic prediction accuracy and more detailed analysis of traffic 
jams with the use additional geo-map tool ArcGIS. 

In 2006 the U.S. Department of Transportation launched the Integrated Corridor 
Management (ICM) initiative to support new technologies that can operate to improve 
transportation corridor [5]. Such growing interest in traffic prediction systems was launched in 
order to support traffic operators in city’s decision-making tasks. Therefore, several widely 
used navigation platforms became willing to help government improve traffic by participating 
in numerous studies.  

Traffic for London in collaboration with Google Cloud  arranged hackathon of traffic 
simulation using London traffic dataset, where one of the teams (companies) came with data 
flow for processing, visualizing and predicting traffic speed in London [6]. Our work adopts 
Big Data and Machine Learning for data flow of analysis and prediction of traffic patterns in 
Los Angeles. Our work is different in the way of deliverables, since we are focusing on 
interactive visuals, depth of information, giving more insights of traffic pattern analysis and 
prediction of traffic congestions. 

Another major navigator, Waze company, has a special program for those who are 
interested and willing to connect with it for better community - The Connected Citizens 
Program (CCP), and through such program partners can exchange data with Waze to make 
data-driven infrastructure decisions and increase the efficiency of incident response [7]. One 
of the works that is based on Waze company traffic data is available in the form of slides from 
Summit on Data-Smart Government at Harvard (November 2017) [8]. This study focuses on 
collaboration of Waze and Louisville City and points out major insights from such partnership. 
The outcome of this work is analysis of data in the form of animated maps and Excel tables of 
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hot spot traffic [9,10]. Traffic department of Louisville currently have a sustained flow of data 
and uses it on a daily basis. However, our work, apart from analysis of traffics, also explains 
the flow of big data files management, dynamic geo-maps and further prediction of traffic 
jams using machine learning. 

Another study was conducted in New Haven County, Connecticut. In this research GPS 
data set was gathered from MapMyRun traffic website and further processed and analyzed 
using R [11].  The author used sampled small data set for analysis, whereas we present a 
framework that can be applied to bigger data sets. Also, this work concentrates on clustering 
the condense areas of traffic, however, our work gives insights to traffic patterns with 
interactive geo-maps and prediction of jams using classification model. 

3. Method 
3.1 Dataset Specification 

The raw dataset, which comprises the details of traffic conditions in Los Angeles County, was 
provided by Information Technology Agency of Los Angeles City Department for study 
purposes. The dataset consisted of 5,858 JSON files covering information reported by app 
users (accidents, jams, road closure etc.) and information captured from users’ devices 
(location, speed, time deviation from original route). This database is not publicly open, and 
data is shared upon request only, therefore we were authorized to use a portion of the data only, 
which is of size 1.8 GB and covers nine days (Dec 31, 2017 – Jan 8, 2018). However, the data 
was captured with millisecond difference and is considered a raw dataset from a navigation 
app.  

After parsing JSON files into readable CSV format, two major files are rendered: alerts 
(information reported by users) and jams (information captured from users’ devices). Total 
number of rows (records) for alerts and jams are 2,170,694 and 16,058,236 rows respectively. 
Since alerts and jams files have different information (one has information reported by app 
users, such as jams, road closure, hazards, car accidents; and the other has information tracked 
from users’ devices, such as location, speed, time deviation from original route) each was 
separately cleaned and then exported for further analysis. The workflow is explained in the 
next section (3.2 Workflow).  
After cleaning and removing irrelevant fields, the attributes and metadata of jams, which are 
generated passively from device’s GPS, are the following (Table 1): 
 

Table 1.  Jams attributes 
location_x X-coordinate of location 
location_y Y-coordinate of location 
pub_date UTC Time of the publication of traffic report 
date_pst Pacific Time of the publication of traffic report 
month Month number of the publication (1-12) 
day Day of the publication (1-31) 
hour Hour of the publication (0-23) 
min Minute of the publication (0-59) 
sec Second of the publication (0-59) 
weekday Day of the week of the publication (Monday - Sunday) 
level Jam level, where 1 – almost no jam and 5 – standstill jam 
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speed Driver’s captured speed in mph 
length Length of the traffic ahead in the route of user in meters 
delay Time deviation from the original time in seconds 

 
And the attributes and metadata filtered for alerts, which are reported by users, are the 
following: 

Table 2. Alerts attributes 
location_x X-coordinate of location 
location_y Y-coordinate of location 
street Street name 
city City, administrative division of LA County (LA County has up to 88 

cities [12]) 
country Country (US); 
road_type Road type (Ex: Street, Primary street, Freeway and etc.) 
report_description Small text describing the traffic event written by user 
type Type of reported traffic event (road_closed, jam, accident, hazard) 
pub_date UTC Time of the publication of traffic report 
date_pst Pacific Time of the publication of traffic report 
month Month number of the publication (1-12) 
day Day of the publication (1-31) 
hour Hour of the publication (0-23) 
min Minute of the publication (0-59) 
sec Second of the publication (0-59) 
weekday Day of the week of the publication (Monday - Sunday) 

In addition, a summary table was created to portray basic information about traffic in a smaller 
aggregated table. Summary table can give insights about amount of jams by time, days, and 
level of the traffic jam. 
 

3.2 Workflow  

Firstly, the raw dataset of 5858 JSON flat files are parsed into readable tables before data 
cleaning. This is be done with Python using Pandas library – “pandas.io.json.json_normalize” 
[13] and extracted data is then exported in two csv files (alerts and jams). Further, files are 
uploaded to Hadoop Big Data system. Big Data is defined as non-expensive frameworks, 
mostly on distributed parallel computing systems, which can store a large-scale data and 
process it in parallel. A large-scale data means a data of giga-bytes or more, which cannot be 
processed or expensive using traditional computing systems [14]. Hadoop is one of the 
popular Big Data platform and Hive is one of ecosystems for Big Data analysis.  

HiveQL is used as a querying language to create the tables’ schema, clean data, create 
summary table for analysis and sample dataset for prediction and output the results. Data 
cleaning was conducted using several techniques such as regular expressions, conditional 
statements, substrings, joining tables with detailed info, date and time formatting and time 
conversion from UTC to PST time zone (Pacific time zone). Final tables’ schema and 
metadata, after cleaning and removing irrelevant fields, is explained in the previous section 
(3.1 Dataset Specification). 
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Once the output files have been downloaded on local machine, Excel’s 3D map, Power BI 
and ArcGIS can be used to obtain the Geo-Spatial visualization of reported traffic events and 
traffic jams. Further, the sampled 100,000 rows from jams file (traffic information captured by 
user’s device), which were randomly pulled from the whole dataset are further used for 
prediction in Microsoft Azure Machine Learning Studio. Traffic jams prediction can be 
divided into further major steps of uploading the sample dataset, applying data transformation 
required for accurate modeling, splitting dataset to train a machine learning model and 
evaluate prediction accuracy. This process will be explained in detail further in this paper (5.1 
Machine Learning Flow). 

The whole process of date processing shown in the below flowchart (Fig. 1).  

 

   
Fig. 1.  Big Data Architecture for Prediction and Analysis 

 

The same data processes can be applied to much bigger dataset (as large as 70GB+ 
annually) as Hadoop system is linearly scalable. 

The below table shows the specification for Oracle cluster we were using for our study 
(Table 3): 

 
Table 3.  H/W Specification 

Number of nodes 6 
OCPUs 12 
CPU speed 2195.196MHz 
Memory 180 GB 
Storage 682 GB 
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4. Analysis and Visualization 
We used different interactive visuals in order to show traffic events (including jams) clearly on 
the map as well as time dependent patterns and different sliced information. After data 
cleaning and preparation for further analysis, files were extracted into Microsoft Excel, Power 
BI and ArcGIS.  

The geo-map, (Fig. 2 and Fig. 3) was made in add-in Excel tool 3D-map, which can be 
used for animated map with a timeline. This map shows a sampled day (Friday, Jan 5, 2018) 
from a full dataset giving an insight into traffic events reported by users and traffic jams 
captured from the user’s device. We used the heat map to show the amount of traffic jams and 
clustered columns to show the amount of reported accidents (red bar) and reported road 
closure (yellow bar). By using the time filed, we were able to build up a dynamic geo-map 
changing over time, showing timeline flow of traffic on a map. Originally, this visualization 
consists of two 52-second videos, showing the full day span (Friday, Jan 5, 2018) of traffic 
patterns in LA County and traffic incidents reported by users.  

 
Fig. 2.  Jams tracked from users’ devices 

 
Fig. 3.  Jams and other traffic incidents reported by users 
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From the geo-map of jams (Fig. 2), we were able to see condensed traffic on highways - 101, 
405, 10; Downtown LA - west area (major concentration of business centers); Santa Monica – 
area close to pier (tourist place); Beverly Hills – along major streets, such as Santa Monica 
Blvd.  Also, the most condensed traffic hours appeared from 3 pm to 6 pm, although morning 
hours (7 am - 9 am) are heavy as well, with less intension, this can be also seen on Power BI 
bar chart (Fig. 4). Another interesting insight is huge traffic in Topanga on Topanga Canyon 
Blvd and Tuna Canyon Blvd. 

  
Fig. 4.  Traffic Jams by Hours 

As you can see both maps (Fig. 2 and Fig. 3) depict traffic situation in Los Angeles at the same 
time around 5 pm, whereas top figure (Fig. 2) shows amount of traffic that platform was able 
to identify, and bottom one (Fig. 3) shows the amount of traffic that users of the app reported. 
Clearly users tend to report less traffic jams than their devices can capture. However, most 
condensed traffic seems to be reported in the same pattern.  

Let’s have a closer view to the specific areas of Los Angeles using ArcGIS tool, which has 
a map layer with the clear street view. Interestingly, heavy hours around the airport appeared 
from 5 am to 8 am and from 7 pm to 10 pm. On the map below (Fig. 5) we can locate 
condensed traffic inside the airport LAX and on the highway leading to the airport (Highway 
405) from 6:30 am to 7 am (Friday, Jan 5, 2018) that can be explained by numerous flights 
arriving at this time [15]. 

  
Fig. 5.  Jams tracked from users’ devices around LAX at 6:30am – 7am 
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A closer map of jams at 7 am around Down Town LA, specifically on Freeways 101, 110, is 
captured on the map below (Fig. 6). Clearly this can be explained by high density of business 
centers in DTLA and business day starting at 8 am. Interestingly, there is also traffic in western 
part on La Cienega Blvd on the entrance to 10th Freeway.  

 
Fig. 6.  Jams tracked from users’ devices around DTLA a 7:10am – 7:20am 

The sectioned line chart (Fig. 7) shows percentage portion of traffic jams by days of week. It 
can be clearly seen that the most congested days are Monday and Friday, while Sunday is least 
one. Traffic jam report is categorized in five different levels. The chart (Fig. 8) shows the 
count of traffic jams by different levels. Level-1 is considered as almost no jam and based on 
the data, is barely captured. Level-2 stands for a light jam, which was captured as few as 30% 
of all jams. Level-3 stands for a moderate jam, with the most portion of traffic jams almost of 
50%. Less than 15% consist of Level-4 traffic, which stands for heavy jam and less than 0.5% 
for Level-5, the standstill jam. So, we can see that our data is slightly skewed to Level – 3 jam, 
whereas heavy traffic condition is more of an interest, specifically for further prediction, since 
an accurate prediction of heavy jams helps better planning of city infrastructure.  

  
Fig. 7.  Traffic Jams by Days of Week  

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020                                 849 

 
Fig. 8.  Traffic Jams by level of traffic  

5. Prediction with Machine Learning 

5.1 Machine Learning Flow 
As mention before, traffic jams dataset, which was passively captured from users’ devices 
GPS, has more than 16 million rows of data. This data is huge for training machine learning 
model without appropriate high computational speed. Microsoft Azure ML Studio is adopted 
for predictive analysis and the sampled dataset is uploaded to build a machine learning model, 
which is a GUI-based integrated environment for constructing Machine Learning workflow 
[16]. Sampled dataset of size 10 MB (100,000 rows) was randomly selected using HiveQL 
from HDFS in a csv file format and then uploaded to for  further prediction modeling.  

The workflow of machine learning process is pictured on Fig. 9. Overall, the process is 
iterative until evaluation result of model is satisfying. The process is explained further in 
details.  

 
Fig. 9.  Model flowchart 
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5.2 Data preparation 
In order to begin modeling, first a label column is selected – level, which indicates jam level 
from 1 (almost no jams) to 5 (stand still jam). This field will be used for classification model 
building. However, the dataset is critically unbalanced, with the following percentages of a 
dataset: level 1 – 4.2%; level 2 – 30%; level 3 – 51%; level 4 – 15% and level 5 – 0,44%. This 
means that based on this dataset our model might fail to predict level 5 (stand still jam), which 
is very critical in our case, since predicting the heaviest jam is more important than others. In 
order to balance data, we grouped five categories into three groups: 1 (low) – jam level of 1 
and 2, 2 (medium) – jam level of 3, 3 (heaviest) – jam level of 4 and 5. In this case we assume 
that difference in original levels 1 and 2 (low levels of jam) is insignificant, as well as for 
levels 4 and 5 (high levels of jams).  

Although, grouping the categories help to balance data, unfortunately this is not enough, as 
data is still biased to the medium level, which can affect model’s prediction accuracy for other 
levels, particularly for the highest level. To overcome such imbalance, we used Synthetic 
Minority Oversampling Technique (SMOTE), which helps statistically increase the number of 
under-sampled records in a dataset [17]. SMOTE is applied to the newly grouped level – 3 
jams (heaviest).  
Since it is natural to expect less traffic during holidays, additional dataset was joined “national 
holidays”, with the dates for national holidays in US for 2018. And further new fields were 
created for model: “is_holiday” (1 – holiday, 0 - non-holiday) and “is_weekend” (1 – weekend, 
0 – not a weekend). 

Adding the field for depicting the nature of busy hours help to improve the model as well. 
So, as we concluded from analysis part, we expect rush time to be between 7 am and 9 am, as 
well as between 3 pm and 6 pm, therefore, a new field “is_rush” (1 – if time between 7 - 9 am 
or 3 – 6 pm) is added. 

Such fields as hours, minutes, seconds, weekday number and etc., have a nature of cyclical 
behavior, which means that numbers do not increment by one in every case and neighborhood 
of 0 to the maximum value is common. For example, 23rd  hour incremented by one gives 0 or 
after 59th second comes 1st. Such cyclical nature of the field should be transformed to the 
appropriate representation. This can be done by converting features from Polar coordinate 
system to Cartesian, applying trigonometric functions. For such cyclical field there is two 
fields of 𝑥 and 𝑦: 

𝑥 = sin𝜑              
𝑦 =  cos𝜑, 

𝑤ℎ𝑒𝑟𝑒 𝜑 =  𝑘 2𝜋
𝑛

            (1) 

where 𝑘 is the original value of the field and 𝑛 is a number of possible values in the field, 
assuming that all the values are discrete.  

Example: hour field (0-23) transforms to SIN(hour*(2*PI()/24)) as sin_hour and 
COS(hour*(2*PI()/24)) as cos_hour. 

Last step in data preparation is normalizing data using MinMax method, in order to rescale 
numerical data to one range.  

5.3 Model Building  
This paper is aimed to predict the appearance of three different levels of traffic jam (1-3) and 
clearly multi-class classification model is a good fit in this case. Azure ML has some of it: 
Multiclass Logistic Regression, Multiclass Decision Jungle and Multiclass Decision Forest, 
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with the best performance in our case. It has to be mentioned that Decision Jungle and 
Decision Forest models are expected to be a good fit for our case, since both are based on 
assembled decision tree algorithm and are appropriate for classification with non-linear 
parameters, however Decision Jungle is compact and powerful discriminative model for 
classification, whereas Decision Forest has no limitation on paths and depths of tree structure. 
As for Logistic Regression, we expect it to run with severely less cost (time), however with 
optimal accuracy, since it does not require any linearity in the variables. We might expect 
tuning the L1 regularization weight and L2 regularization weight, since probability threshold 
might be not clearly established. 

Model training is conducted after dataset is split into training set and testing set, we chose 
70% and 30% of set respectively. After several iterations of model training/testing and by 
calculating the weight of various columns, we excluded columns that have no value for traffic 
jams prediction and do not improve the model’s performance. We also used Cross Validation 
and Tune Model Hyperparameters, which helps determine the optimum parameters for 
selected model. By evaluating performance of several multiclassification models  - the best 
model with the highest measures of performance is Multiclass Decision Forest with the 
following parameters: Number of decision trees – 50, Maximum depth of the decision trees – 
32, Number of random splits per node – 300 and Minimum number of samples per leaf node – 
1.   

5.3 Model Evaluation 
There are several metrics to evaluate performance of the multiclass classification model as 
follows [18]:  

- Classification Accuracy (overall and average) - percentage of total records classified 
correctly, which can be defined by the following ratio: 

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 

where TP, FN, FP and TN represent the number of True Positives, False Negatives, 
False Positives and True Negatives, respectively.  

- Precision/Sensitivity (micro and macro) – ratio of correctly identified records as 
positive out of total records identified as positive: 

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

 

- Recall (micro and macro) – ratio of correctly identified records as positive out of total 
actual positives: 

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 

Since our data has imbalance issue the best metrics for model validation in our case are 
micro-averaged methods, where separate true positives and false negatives are summed up for 
different sets and then applied for accuracy and recall calculations [19].  

An improved Multiclass Decision Forest model predicts the class of traffic jam with 
Micro-average Recall of 0.692109. Confusion matrix (Tables 4) shows that model performs 
best at predicting 3rd class of label, the heaviest traffic jam level, with the accuracy of 78.4%. 
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Although model is less successful at predicting the lowest class of traffic jam with the same 
accuracy (accuracy 56.5%), it still has a low critical false classifying into the highest level of 
jam, which is only 6.8%. This means that model is good at predicting the heaviest traffic jams 
and probability of misclassifying any actual heavy congestions into low level is insignificant 
as well as probability of misclassifying any no-jam (low level) records into heavy traffic. 
(Tables 4 and Table 5). 

Overall micro-averaged accuracy of the model is 79.4%, which proves that our model has 
almost 80% chance of predicting the right traffic in Los Angeles. And Recall of 69.2% proves 
that correctly identified traffic patterns were almost 70% of the actual traffic congestion.  

 
Table 4.  Confusion Matrix 

 Predicted Class 

Actual 
class 

 1 2 3 
1 56.5%  36.7% 6.8% 
2 16.6% 69.7% 13.7% 
3 4.7% 16.9% 78.4% 

 
Table 5.  Model Metrics 

 Macro - averaged (overall) Micro-averaged 
Accuracy 0.692109 0.794739 
Precision 0.691629 0.692109 

Recall 0.681826 0.692109 

6. Conclusion  
From the above we can conclude that our study has revealed several insights of traffic pattern 
in Los Angeles County. Most of the traffic is condensed on highways/freeways and the busiest 
are highways 101, 405, 10. Although morning rush hours from 7 am to 9 am produce a lot of 
traffic, the heaviest traffic time starts from 3pm and gets better after 6pm. Major areas of 
traffic are: Downtown Los Angeles, Santa Monica, Hollywood, and highways. There are also 
traffic congestions observed near LAX airport from 5 am - 7 am and after business hours at 7 
pm - 10 pm. 

We can also conclude that traffic jam prediction is possible in a long-term perspective. 
Location, date and time can be useful in order to classify the existence of a jam in LA County. 
Prediction can be performed using machine learning algorithm, multi-class classification 
model - Decision Forest. The accuracy of traffic prediction is 78.4% for the heaviest traffic 
jam and overall accuracy of the model is 79.4%, which is an improved performance from the 
previous version of this work, that was presented during the conference APIC-IST 2019. 

In this paper we presented Big Data platform and architecture that allows storing and 
analyzing giga-bytes of data set – possibly more datasets as the system is linearly scalable. 
From the available data in Hadoop, which is limited to few days, we were able to provide an 
interactive tool for analysis, data manipulation and data prediction. Further work can be done 
with bigger dataset and more classification models in order to find more insights and create a 
data driven conclusions on LA County traffic situation by using this framework.  
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