
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, Jun. 2017                                         3230 
Copyright ⓒ2017 KSII 

De-cloaking Malicious Activities in 
Smartphones Using HTTP Flow Mining 

 
Xin Su1,2, Xuchong Liu1,2, Jiuchuang Lin3,*, Shiming He4, Zhangjie Fu5 and Wenjia Li6 

1 Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, Changsha, 
Hunan, 410138, China 

2 Departmentl of Information Technology, Hunan Police Acadeny, Changsha, Hunan, 410138, China 
[e-mail: suxin@hnu.edu.cn, 14117874@qq.com] 

3 Key Lab of Information Network Security, Ministry of Public Security, Shanghai, China 
e-mail: linjiuchuan@star.org.cn 

4 School of Computer and Communication Engineering, Hunan Provincial Key Laboratory of Intelligent Processing 
of Big Data on Transportation, Changsha University of Science and Technology, Changsha, Hunan, 410114 

e-mail:heshiming_hsm@163.com 
5School of Computer and Software, Nanjing University of Information Science and Technology,  

Nanjing, Jiangsu, 210044 
e-mail: fzj@nuist.edu.cn 

6Department of Computer Sciences, New York Institute of Technology, New York, NY, USA 
e-mail: wli20@nyit.edu 

*Corresponding author: Jiuchuang Lin 
 

Received November 26, 2016; revised February 27, 2017; accepted March 21, 2017;  
published June 30, 2017 

 

Abstract 
 

Android malware steals users’ private information, and embedded unsafe advertisement (ad) 
libraries, which execute unsafe code causing damage to users. The majority of such traffic is 
HTTP and is mixed with other normal traffic, which makes the detection of malware and 
unsafe ad libraries a challenging problem. To address this problem, this work describes a novel 
HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad 
library. This work designed AndroCollector, which can automatically execute the Android 
application (app) and collect the network traffic traces. From these traces, this work extracts 
HTTP traffic features along three important dimensions: quantitative, timing, and semantic 
and use these features for characterizing malware and unsafe ad libraries. Based on these 
HTTP traffic features, this work describes a supervised classification scheme for detecting 
malware and unsafe ad libraries. In addition, to help network operators, this work describes a 
fine-grained categorization method by generating fingerprints from HTTP request methods for 
each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP 
traffic traces collected from 10778 Android apps. The experimental results show that the 
scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy 
when tested on the popular third-party Android markets. 
 
Keywords: Automatic execution, HTTP traffic, Android malware, flow mining, 
classification 

 
https://doi.org/10.3837/tiis.2017.06.023                                                                                                              ISSN : 1976-7277 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3231 

1. Introduction 

Smartphone apps have become the quintessential means of accessing personalized 
computing services like email. The ease of installing new mobile apps or upgrading existing 
apps makes the Android platform a popular choice among users and developers alike. But this 
rapid deployment and availability of mobile apps has made them attractive targets for malware 
and commercial advertisements issued through unsafe ad (advertisement) libraries. Malware 
authors take advantage of the update mechanism of mobile apps to infect existing mobile apps 
with malicious code and compromise the security of the smartphone. A lesser, but serious, 
threat is the embedding of unsafe ad libraries by developers, which are used in stealthy 
activities like downloading unsafe code, tracking users’ personal profile and so on. 

Recent studies show that malware based on Android platform accounts for 85% of mobile 
malware [1]. The private data of the users, such as the contacts list, text messages, location and 
other user specific data are the primary target for the attackers. To evade anti-virus signature 
scanners, the attackers take advantage of the Android update mechanism to download 
malicious code and change the nature of an originally safe mobile app. A similar functionality 
is achieved by the use of untrusted thirdparty ad libraries, which are more focused on trying to 
activate premium services on the smartphone or leak user specific preferences and other 
commercially relevant information. Due to the dynamic nature of the malicious code it is 
difficult to detect these threats using binary code analysis and anti-virus signature scanners. 
Also, several ad libraries are usually safe and do not try to steal the user’s data, but the nature 
of the ad library can be inferred only after observing the data it sends and receives from the ad 
servers. Certain ad libraries repeatedly pop-up ads causing annoyance and disrupting the tasks 
of the smartphone users. While the financial losses due to these factors is substantial, a bigger 
loss is incurred due to the compromise of privacy of individual users leading to serious 
security concerns beyond the digital domain. Therefore, there is an urgent need to address 
these threats considering their impact in terms of user smartphone experience, individual 
privacy and financial losses. This work addresses the problem of detecting the malware and 
unsafe ad libraries with a goal of understanding the proliferation of such malcontent within an 
enterprise network or an Android marketplace. 

A number of research works have characterized malware and unsafe ad libraries based on 
code analysis [2], [3]. These approaches have proposed a range of static and dynamic analysis 
techniques on a large number of Android apps to detect malicious apps. However, the 
accuracy of these approaches gets adversely affected due to the code obfuscation techniques 
used by malware authors. There are other works focusing on network level analysis and detect 
malicious behavior. In [4], the authors describe an approach to manually execute the apps and 
analyze the resulting traffic. However, this approach is not scalable due to the large number of 
apps being released into the Android market on a daily basis. In [5], the authors analyze 
malware using DNS traffic traces from cellular provider. However, this approach fails if the 
malicious apps use hard-coded IP addresses or if the DNS traffic behavior is similar to the 
behavior exhibited by benign apps. 

Existing approaches have not addressed the detection of malicious apps and unsafe ad 
libraries while considering the correlation between the application level semantics and 
corresponding traffic of the mobile apps and the unsafe ad libraries. Study [6] shows that the 
majority of the activities of the Android apps are performed by over HTTP. Based on past 
research analysis, most network traffic generated from Android app and ad libraries is HTTP 



3232                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

traffic, especially, over 80% malware use the HTTP-based web traffic to receive bot 
commands from their C&C servers [25].  

Our proposed approach focuses on the analysis of the HTTP flow traffic generated by the 
malicious apps with the goal of providing the network operator a detailed view of the 
proliferation of malcontent within a network. First, to extract the network behavior of an app, 
this work performs automatic execution of the mobile app and capture the resulting HTTP 
traffic traces. The execution of the Android app is essential to examine any malicious run-time 
behavior, such as leak personal information and to observe its traffic patterns corresponding to 
these activities. Second, to capture the activity related behavior of the mobile app, this work 
categorizes the HTTP traffic of the mobile app in three different metric categories: quantitative, 
semantic and timing related. Based on these categories, this work extracts several features 
from the HTTP traffic traces and use these features as an indicator of the application level 
behavior of the mobile app. Third, this work characterizes ad traffic by extracting useful 
features from well known malicious ad libraries in the wild, regardless of whether the ad 
library is embedded inside a benign or a malicious app. Through these features, this work can 
detect the presence of malicious ad libraries, even if the ad library traffic is intermixed with 
benign app traffic. Finally, this work generates compact fingerprints for the malware to 
categorize them based on similarity. The fingerprints can be distributed to the network 
operators to allow them track the extent of malicious activity in their network. 

First, this work needs to be able to automatically execute several apps to extract statistically 
significant features while ensuring that the automatic execution is bounded within realistic 
time limits. The essential requirement of the automatic app execution process is that it must 
explore the relevant portions of the mobile app code in a detailed and comprehensive manner 
while simulating a typical smartphone user interaction with the mobile app. Towards this, this 
work developed AndroCollector, which is an automated Android app execution and traffic 
collection tool to execute the Android app based on depth-first exploration algorithm and 
captures the corresponding network traffic.  

Second, there is need to identify suitable features under each of three categories: 
quantitative, semantic and timing, as an appropriate choice will enable proper characterization. 
Towards this, this work monitors the HTTP flows of the apps and extract various statistical 
traffic metrics, such as packet sizes and so on, and HTTP specific metrics, such as length of 
response in GET/POST requests and so on. Also, to capture the request/response semantics of 
malicious content, this work considers the timing related features such as the interval between 
a request/response cycle and so on. Using supervised learning algorithms, this work uses the 
extracted features to build a classifier to distinguish between the network behavior of a benign 
and a malicious app. Furthermore, this work uses the HTTP headers to generate fingerprints 
for different malware and categorize them.  

Our key contributions are as follows. (1) This work designed AndroCollector, an automated 
traffic collection tool to automatically execute Android apps to collect real network traffic 
traces from 10K+ Android apps. (2) This work identified several HTTP traffic flow features 
from collected network traces of Android apps and showed that these features are quite 
accurate in capturing the malicious behavior of the mobile apps and unsafe ad libraries. (3) 
This work generated fingerprints from the host name and the invariant part of HTTP request to 
categorize malware and unsafe ad libraries. (4) This work performed extensive evaluation on 
real-life malware and unsafe ad libraries, using multiple classifiers and showed that our 
method has a high detection accuracy of 98%. 

Organization. Section 2 describes the related work of malicious apps and unsafe ad 
libraries analysis and detection. Section 3 discusses the design details of AndroCollector tool. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3233 

Section 4 characterizes Android app and ad libraries based on several HTTP traffic and flow 
features. Section 5 discusses categorize Android malware based on HTTP fingerprinting. 
Section 6 evaluates our methodology and describe a fine-grained categorization approach for 
understanding malware distribution patterns. Conclusion describes in Section 7. 

2. Related Work 
In [7], the authors describe a coarse-grained protocol level classification based on signatures 
of applications developed from statistical information, such as packet sizes and other flow 
information. Discoverer [8] focuses on generating application-level signatures from the 
network traces of the application under study. However, those techniques do not work well for 
the Android apps where a majority of traffic is carried within HTTP and the major 
distinguishing features are present in the URLs. 

Network level analysis of malicious behavior offers a complementary means of 
characterizing and mitigating malware. For example, a popular method of preventing or 
limiting the spread of malware is the use of Internet blacklists. IP blacklists provide a list of 
known bad actors in the form of IP addresses, which network operators can subsequently 
block; however, the use of DNS to build malicious network infrastructures has grown due to 
its resilience against IP blacklisting as discussed in [9]. Consequently, a significant amount of 
work has focused on analyzing networks at the DNS level [10], [11]. This has led to the 
creation of systems that are able to detect malicious domains through the use of passive DNS 
monitoring and machine learning techniques [12], [13], [14], [15], [16], [17], [18]. However, 
any blacklisting scheme is known to suffer from scalability issues as the number of blacklisted 
domains is not bounded and increases on a daily basis. 

There have been many efforts that try to understand smartphone usage behavior. 
Profiledroid [4] aims to build app profiles at multiple levels, including network, but their 
technique completely relies on users running apps to generate traffic and does not scale for a 
large number of apps. Drebin [3] is a recently proposed approach, which tries to explain the 
behavior of malicious apps using features extracted through static analysis. However, this 
approach does not consider the run-time network behavior of the Android app and cannot 
detect obfuscated app behavior, which is revealed only after an obfuscated app unfolds itself 
and starts executing. 

There have been a large number of directed efforts on analysis ad libraries. In AdRisk [19], 
the authors proposed a statistical approach to analyze ad libraries. In AdCache [6], the authors 
characterized ad traffic, but this work just focuses on limiting the energy and network 
signaling overhead caused by ads. MobiAd [20] and PrivAd [21] suggest local profiling and ad 
serving in order to protect the user privacy, using a third party to help in the anonymization 
phase. This work addresses the limitations of existing work by presenting a comprehensive 
and systematic characterization of malware apps and unsafe ad libraries using HTTP traces. 
The following sections will discuss the prevalence of HTTP in Android app development 
phase. 

3. Automated Android App Traffic Tracing 

3.1 AndroCollector 
To accurately model the behavior of the Android app based on its HTTP traces, the Android 
app must be made to execute the various network related activities and try to simulate the 



3234                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

behavior of manual user interaction with the app. Therefore, this work designs an automatic 
app execution tool while focusing on two key design considerations: first, to execute the 
Android app in a comprehensive manner and second, to simulate the user’s behavior to operate 
the Android app. The architecture of AndroCollector is shown in Fig. 1, which is composed of 
three components: Automatic Execution of Apps module, Traffic parser and Storage modules. 
 

 
Fig. 1. Overview of AndroCollector 

 
Automatic Execution of Apps This work designed this module base on two Android 

testing tools: monkeyrunner [22] and hierarchy viewer [23]. This component is responsible for 
executing Android apps and collecting their network traffic and consists of three sub-modules: 
Event module, Duration module and Auto Execute module.  
 

Algorithm 1. Activity Exploration Algorithm 
Input: Entry Point Activities |A|       
1 function DFI(|A|) 
2    for All Activities Ai, Aj in |A| do 
3     Change to Activity Ai; 
4     DEPTH_FIRST_IDENTIFICATION(Ai); 
5    end for 
6 end function 
7 function DEPTH_FIRST_IDENTIFICATION(Ai) 
8    Widgetset←GET_WIDGET(Ai); 
9    for each widget in Widgetset do 
10     if (Widgetset.isclickable==TURE) then 
11       if(Ai→Aj) 
12         record this activity transition; 
13         DEPTH_FIRST_IDENTIFICATION(Aj); 
14         Back to Activity Ai; 
15       end if 
16     end if 
17   end for 
18 end function 

 
1) Event Module: The Event module implements the automatic install, execute and removal 

of Android apps based on the API of monkeyrunner. The module simulates user’s behavior 
like clicking buttons, touching screen, pressing keyboard and so on, which are the set of user 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3235 

interaction (UI) components, commonly known as widgets. These actions would trigger the 
app to access Internet and generate network traffic. To simulate user behavior events this work 
considers two types of user behavioral models: random and specific event. During the random 
behavior, the simulator chooses a random action, such as a button click or pressing key board 
to simulate a real user’s operation on Android app and proceeds to explore all reachable 
activities from this action. On the other hand, the specific behavior event captures the scenario 
when the app needs to follow a specific execution path to trigger the events generating the 
network traffic. The set of such paths are implemented by using our Path Module as described 
in the following.  

2) Path Module: The Path Module, using the API of hierarchy viewer, identifies the current 
activity and obtains feature information of all widgets in this activity e.g., (name, id, 
isClickable). Android apps consist of a number of activities where an activity is an app 
component that provides a screen with which users can interact to perform an action. When an 
app is launched, its Main Activity displays several clickable widgets, e.g., Button, Textview, 
Imageview and so on, which correspond to several options. Choosing one such widget allows 
the module to discover more possible widgets. The detailed exploration algorithm is described 
in Algorithm 1. Specifically, this work chooses those activities that lead to network traffic and 
store such paths in the Path Module. 

3) Auto Execution Module: The Auto Execution Module is responsible for executing the 
app for traffic collection. This module executes apps automatically in two ways depending on 
the two kinds of behavioral events, random or specific, chosen from the from the Event 
Module. In the random behavior, the Auto Execution Module only receives random behavior 
events from the Event Module, and executes the app by choosing the reachable widgets in a 
random manner. For specific behavior, all the reachable paths are explored in depth and due to 
this exploration, specific behavior takes more time than random behavior. This module is also 
responsible for launching the traffic capture tool tcpdump, which automatically captures the 
network traffic flowing into and out of the Android app. The captured traffic traces are passed 
on to the Traffic Parser module for analysis.  

Traffic Parser The Traffic Parser extracts traffic features (cf. Section 4) that correspond to 
different network behaviors of Android apps. The module considers individual flows to extract 
the traffic features. Since most Android apps run over HTTP protocol [6], [24], this module 
focuses on the feature extraction from HTTP traffic. The first class of features extracted from 
the collected traffic traces are based on flow statistics, which include features such as packet 
count, byte count, and so on. The second class is extracted from the client access 
patterns-based features, which shows the duration of apps visiting different servers, 
destination addresses and so on. The third class are HTTP specific features, which include 
different HTTP requests and responses, such as host name, request method, length of HTTP 
request/response and so on. These extracted features stored in a database and updated 
periodically by newer data. 
Storage The storage component takes the results of traffic parser as input, stores them into a 
database and maintains periodical updates as observed from new data. The component also 
computes the mean, standard deviation, maximum, minimum, median, and sum, for further 
analysis. There is some meta-description maintained by the storage component about Android 
apps, such as package name, market place, whether contains ad library etc. 

3.2 Ad Traffic Extraction 
Since ad libraries are embedded in Android apps, their traffic is mixed with traffic of Android 
apps and makes it difficult to identify the specific nature of the ad traffic.  Note that ad libraries 



3236                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

and the respective ad networks have high diversity [6] in terms of requesting resources related 
to displaying the ads or the ads themselves. This work utilized 100 most popular ad libraries as 
reference and analyzed the HTTP headers across these libraries. We observed that the 
combination of Host field, the invariant request and response patterns such as the URL query 
can be used to uniquely classify the ad libraries. This work was able to extract some 
distinguishing aspects based on the HTTP request mechanism employed by the ad-libraries. 
Some ad networks require HTTP POST method to update source information, e.g., InMobi 
and others require both GET and POST, e.g., Admob Some ad networks need to redirect 
HTTP request to another URL, e.g., googleadservices. Based on these three distinguishing 
characteristics, this work extracted a set of rules based on our observations and show them in 
Table 1. 

Table 1. Rules extracted from example ad library 
URL domain HTTP request HTTP response Redirect 

URL 

r.admob.com POST /ad source.php HTTP/1.1 200 
OK (text) 

 

mm.admob.com GET /static/xnetwork/arrow out.png HTTP/1.1 200 
OK (PNG) 

 

googleads.g.doubleclic
k.net 

GET /aclk?sa=...&adurl= 
lawoethailand.net 

HTTP/1.1 302 
Found 

lawoethailand
.net 

googleadservices.com GET 
/paged/aclk?sa=...&adurl=airkx.com 

HTTP/1.1 302 
Found 

airkx.com 

umeng.com POST /check config update HTTP/1.1 200 
OK (json) 

 

 
First, our approach checks whether the URL domain exists in the domain list of 100 ad 

libraries. Next, inspect the HTTP request and HTTP responses. If the HTTP response is 
HTTP/1.1 200 OK, extract traffic related to the URL domain. If the HTTP response is 
HTTP/1.1 302 Found, check the value of parameter of adurl to which the HTTP request 
redirects to and extract the traffic of the original URL domain and redirect URL domain and 
store them as one common trace for feature extraction. As an illustration, the library Admob 
sent a HTTP request to its servers, and received response HTTP/1.1 200 OK, which stands for 
successful request. The googleadservice library sent HTTP request which contains a adurl 
field showing the redirect URL, and received a response HTTP/1.1 302 Found, which means 
this ad network will connect to this URL to finish request subsequently. Based on these rules 
this work represents them as state machines as shown in Fig. 2(a) and 2(b), which captures the 
flow of ad network HTTP request and response. Since a state machine can represent a set of 
similar rules, thereby reducing the size of rules, and can make the ad traffic extraction more 
efficient. 

  
(a) State Machine for Normal Ad 

 
(b) State Machine for Redirect Ad 

Fig. 2. Sample HTTP Traffic and Their Corresponding State Machines 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3237 

4. HTTP Flow Mining Approach 

4.1 Android Malware Characteristics 
Existing works [6], [25] have noted the prevalence of HTTP usage in malware and ad 

libraries. This work provides a brief statistical overview to confirm this observation by 
studying a corpus of malicious and benign apps. This work collected a set of malware apps 
from Android Malware Genome Project [25], and also collected Android apps from Google 
Play and several popular third-party markets (the detail will be described in section 6.1). 94% 
of the apps requested the android.permission.INTERNET permission in their manifest files 
can be found from the collection of apps. Furthermore, in the malware data set, we noted that, 
93% of samples use HTTP to receive bot commands from their C&C servers. Thus, this brief 
analysis shows the correlation between malware apps and HTTP. This is our motivation to 
study this correlation further and use this observation to detect malicious behavior in apps.  

1) Android Apps: To understand the behavior of Android malware, this work has 
performed execution of Android apps infected with different malware and identified 
common behaviors across these apps. For this experiment, our test data set consisted 
49 different malware families, where each malware family consists of malware 
binaries that are enhanced versions of each other without much change to the 
commonly observed malicious behavior. This work experimented with 1260 different 
malware binaries chosen uniformly from the malware families. Benign apps exhibit 
normal network behavior, such as online chat and watch videos, which are mostly user 
initiated without revealing any personal information to the external web server. 
Whereas, malware usually communicate with remote server to send user private 
information, e.g., IMEI, location, requesting dynamic loading of compiled Android 
code and converting the smartphone into bots. Furthermore, to avoid anti-virus 
signature detection, malware usually transfer a small amount of traffic data and end the 
communication in a short time-span.  

 
Table 2. Malware activity 

Malware 
name 

Local activity HTTP activity 

Droidkungfu Copy IMEI Number, Phone model 
number 

HTTP Post to a hard-coded remote server – 
http://xxxxxx.xxxxxx.com:8511/search/sayhi.php 

Anserverbot Dynamic code loading and 
copying passwords, SMS etc 

Using HTTP GET to retrieve encrypted 
commands from remote Bot master server 

Plankton Collects information, including 
the device ID, list of granted 

permissions to the infected app 

HTTP Post to 
http://www.xxxxxx.com/ProtocolGW/installation 

Basebridge Collects sensitive information, 
such as IMEI, manufacture and 

model of the device 

HTTP protocol:b3.8866.org on port 8080 

 
Table 2 shows some typical activities exhibited by a few malware apps, which are 

categorized under: Local activity and HTTP Activity. The term Local Activity indicates the 
activity performed by the app within the phone and HTTP Activity indicates the specific 
HTTP calls used by the malicious app. Note that, the behavior of most existing malware is a 
composition of one or more of these activities as observed by the studies in [4]. Regardless of 
the type of malware, the use of HTTP to steal private information or receive control 
information can be seen to be the common feature. Furthermore, the network behavior of 

http://www.xxxxxx.com/ProtocolGW/installation


3238                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

metamorphic behavior remains unchanged, i.e., all malware binaries of a single malware 
family exhibit very similar or identical HTTP related behavior. 

2) Ad Libraries: Since ad libraries are embedded inside Android apps, it is not immediately 
apparent to notice the behavior of a malicious ad library. Our test data consisted of 23 apps 
containing embedded malicious ad libraries. This work chose Android apps in such a way that 
their general behavior is well known and any extraneous network behavior must emanate from 
the embedded ad library. Therefore, in most cases, the nature of HTTP transmissions due to 
the ad libraries was a good indicator of the malicious behavior of the ad libraries. For instance, 
malicious ad libraries usually indulge in sending the phone call history information, browser 
bookmarks, installed apps list and other private information to the remote ad servers. Table 3 
shows a sample list of malicious ad libraries and their corresponding malicious activity. All 
the embedded ad libraries used HTTP transmissions to steal information or to compromise the 
smartphone user’s privacy. 
 

Table 3. Embedded ad library activity 
Ad library Malicious network activity 

Soseco Transmits call history information and uploads the list of installed apps 
Enerysource Downloads code that can open backdoors for future exploits 

Adserver Exposes location and IMEI information to its advertiser 

Mobus Reads SMS database looking for administrative information of the user’s 
SMS Center and relays this information to its server 

4.2 HTTP Flow Feature 
To understand the relative differences between the HTTP traffic generated by benign and 
malicious apps, this work identified three different categories of HTTP flow features and 
compared them. The three flow categories are: quantitative, timing and semantics based 
features. Note that, these three categories can accurately capture the network level behavior of 
the Android app while being able to correlate this behavior to the execution of the app. As 
malware apps and ad libraries are expected to show variations in the network traffic volume 
and activity, these categories of features will enable us to observe such differences. 
Furthermore, since these feature categories are both statistical and semantic, they are content 
agnostic and are not dependent on the specific data set used to extract the features. 

Our data set consisted of 1260 malware apps across 49 different malware families, as 
outlined in the previous section. 4868 benign apps have been chosen from a wide range of 
normal applications, such as games, books, finance, shopping, music and so on. For analyzing 
the ad library traffic we considered 4290 apps of which 3431 apps consisted of safe ad libraries 
and 23 apps consisted of malicious ad libraries using AndroCollector, executed all these apps 
individually and collected the corresponding flow characteristics. Since this work is interested 
in an aggregated view of the flow characteristics across these apps, this work uses the 
cumulative distribution function [25], CDF as the common metric of comparison across the 
various features. In all the figures, the X-axis represents the feature values, such as the number 
of packets and so on. The Y-axis represents the CDF of the corresponding value, which 
describes the probability that a feature value X  with a given probability distribution will be 
found to have a value less than or equal to ix  where ix  is the x-axis co-ordinate. 
 

                                                  )()( ixXPxF <=                                               (1) 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3239 

1) Quantitative Features: This category measures and compares the volumes of traffic 
across malware and benign apps, and feature description is shown in Table 4. When malware 
communicate with malicious servers, they request update commands and leak private 
information with a fixed format. Also, malware do not generate large traffic volumes to avoid 
detection by anti-virus scanners or intrusion detection systems. Therefore, a malware trace 
might contain many flows with similar traffic size. 
 

Table 4. Description of quantitative features 
Feature name Description 

Number of packets Number of packets transmit between app and 
server 

Number of bytes Number of bytes transmit between app and server 
Number of received packets Number of packets received by app 

Average bytes of received packets Average bytes of packets received by app 
Average size of packets Average size of packets transmit between app and 

server 
In/out ratio Ration of traffic size between sent and received of 

app 
 
The first two features are numeric, i.e., the number of packets and the number of bytes sent 

within the execution time of the Android app. Benign apps have rich functionality, their 
network activities include, text chat, videos, image downloading and so on. Therefore, these 
network activities are expected to have a variable number of packets due to the variable size of 
the data involved. On the contrary, malware focuses on sending out private data out, which is 
usually in standard size regardless of the smartphone in use and hence, it is expected that the 
number of packets per flow is similar across multiple malicious apps. In Fig. 3(a) and 3(c), 
80% of malware flows contain about 10 packets or less has been observed. Only 30% and 50% 
of benign app and ad library flows achieve this number. Moreover, benign app and ad library 
transferred more packets per flow than malware. 
 

 
(a) CDF of Packets                                                (b) CDF of Bytes 

 
(c) CDF of Packets                                                (d) CDF of Bytes 

Fig. 3. Comparison of the Numeric Aggregates of Transfer Size 



3240                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

Next, the size of the incoming traffic in terms of the number of packets and the received 
bytes have been measured. These features represent the number of packets received during app 
communication with a remote server. Because benign apps may receive large size files from 
servers, due to the limitation of a packet length, the large size file is split into several segments 
thereby, increasing the number of received packets. Whereas in malware apps, the received 
command packets usually are small size packets and hence, remain undivided as shown in Fig. 
4(a) and 4(c). In these figures, benign app flows contain more received packets per flow than 
malware. Also, Fig. 4(b) and 4(d) show the average packet size in each flow. The relative 
difference in packet sizes is clear from these results. 
 

 
(a) CDF of Packets                                                (b) CDF of Bytes 

 

 
(c) CDF of Packets                                                (d) CDF of Bytes 

 
Fig. 4. Comparison of the Numeric Aggregates of Inward HTTP Flow Traffic 

 
Finally, the CDF of the average data per packet as this gives an estimate of the uniformity of 

data leaked by malware apps or unsafe ad libraries has been compared. In benign apps, the 
packet size is not constrained as the user can download or upload data of any size. For malware 
apps the command packets typically have small size due to compact nature of the Botnet 
protocol communication. 
 
 

 
(a) CDF of Packets                                                (b) CDF of in/out ratio 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3241 

 
(c) CDF of Packets                                                (d) CDF of in/out ratio 

Fig. 5. Data Sizes and Relative Traffic Ratios of HTTP Flows 
 

In Fig. 5(a) and 5(c), almost 50% of malware packet sizes are in the range from 101 bytes to 
200 byte, and less than 30% of benign app packets sizes fall in this range. This work also 
measured the corresponding ratio of the traffic size going in and out of the smartphone as this 
feature captures the role of an app as a consumer or producer of data. The role of benign apps 
and safe ad libraries should be consumer, because they usually request large size files to 
indicate downloads. Whereas, malware apps and unsafe ad libraries should be in the role of a 
producer, because they usually send private data out, such as IMEI number, location, contact 
information and only receive small commands in response. Some malicious apps receive 
malicious code at run-time, however, this behavior typically happens in bursts and is 
short-lived. Moreover, once the code is downloaded, the malware reverts to its regular 
behavior of leaking more information out of the smartphone than downloading data from the 
Internet. From Fig. 5(b), for benign apps, note that about 20% of the ratios of the incoming and 
outgoing traffic are lesser than 1, which shows that this traffic contains more sent data than 
received data. As expected the HTTP traffic from Youku, PPTV, and PPS, which includes 
audio and video content, is mostly incoming traffic as the large values of the ratios show. 
Finally, note that 60% of the ratios in malware app are lesser than one, as malware traffic has 
unusually large uploads, which points to massive theft of sensitive user data. 

A contrasting behavior is exhibited by ad libraries as can be seen from Fig. 5(d) where 50% 
of the ratios in ad library traffic are lesser than one. This is because incoming traffic of many 
ad libraries contain only contain text or Javascript code, which is typically small. 

2) Timing Based Features: The second type of feature category is time-based features, 
which tries to capture the duration of activity of the Android app. The detail information of this 
kind of feature is shown in Table 5.  
 

Table 5. Description of timing based features 
Feature name Description 
Flow duration TCP session length 

Number of bytes per second Number of bytes transmit between app and server 
per second 

 
In order to keep the communication traffic under the radar, most malware apps use a shorter 

time-span than the benign apps or safe ad libraries. This work extracted two features that 
depend on time: flow duration and the number of bytes per second. For this feature category, 
complementary cumulative distribution function (CCDF) has been used, which is defined as 
shown: 
                                                  )(1)( ixXPxF <−=                                                      (2) 

 



3242                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

 
(a) CCDF of flow duration                                (b) CDF of Bytes per second 

 
              (c) CCDF of flow duration                                (d) CDF of Bytes per second 

Fig. 6. Flow Duration of HTTP Flows 
 

The duration of flow is typically the TCP session length, which represents the amount of 
time an app requires to conduct its network functions with its destination server. In Fig. 6(a) 
and 6(c), a CCDF plot of the HTTP flow duration in benign apps, malware apps and ad 
libraries. We notice that, for benign app and ad libraries, more than 40% flows have a duration 
shorter than 2 seconds. This is because many flows in benign apps and ad libraries only 
transfer small data like text or small image files for which the duration is short. This figure also 
shows that benign apps account for a larger proportion of long duration flows. 

This feature represents the rate of bytes of each kind of app, which is an average measure 
computed over the entire duration of the app execution. Fig. 6(b) and 6(d) show the CCDF of 
number of bytes per second in benign app, malware app and ad library. there is a clear gap can 
be observed, i.e., 70 bytes/s as compared to 1200 bytes/s, between benign app and malware 
respectively, which demonstrates that malware communication is lightweight, stealthy and 
ends in a short time period. 

3) Semantic Features: More than 90% of apps run over HTTP protocol and that 93% of 
malware samples use HTTP to receive commands from their C&C servers can be found in the 
collected Android apps. Thus, considering this scenario, the network behavior can be 
correlated to the semantics of the different HTTP requests and responses. The network 
behavior changes with respect to the HTTP method, contacted hosts, URL paths or queries and 
so on.  

 
 

Fig. 7. HTTP request of Droidkungfu 
 

To better illustrate the HTTP request, Fig. 7 shows a HTTP request of DroidKungfu as an 
example, where m represents the request method, e.g., GET, POST; p stands for page, namely 
the first part of the URL that includes the path and page name not including the parameters; 
n represents the set of parameter names and v  represents value of parameters. By varying any 
of these variables, the network behavior and the corresponding HTTP flow features change. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3243 

Three features of importance should be considered: length of the URI POST/GET request, 
length of the page per GET/POST and length of the parameter per GET/POST. The detail 
information of this kind feature is listed in Table 6. 
 

Table 6. Description of semantic features 
Feature name Description 

Length of URI per GET/POST request The number of resources requested by app 
Length of page per GET/POST request The length of paths visited by the app to 

obtain the resources 
Length of parameter per GET/POST request The length of parameter contain in each 

request 
 
The length of URI per GET/POST request shows the number of resources requested by the 

app. Benign apps may request various kinds of files, whereas malware usually request 
commands update or leak private data out in a fixed format. In Fig. 8, we found that benign 
app flows have a clear difference with malware flows in length of URI per GET/POST request. 
 

 
(a) CDF of length of GET                                (b) CDF of length of POST 

 

 
(c) CDF of length of GET                                (d) CDF of length of POST 

 
Fig. 8. URI lengths of HTTP requests 

 
The length of page represents the paths visited by the app to obtain the resources and 

typically, the same HTTP request contains more than one resource path. Benign apps usually 
request multiple resources as they try to maximize the user experience and on the other hand, 
malicious apps request a small number of resources. In Fig. 9, the length of pages benign apps 
visited have larger length than malware in both GET and POST requests. 



3244                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

 
(a) CDF of length of GET                                (b) CDF of length of POST 

 
(c) CDF of length of GET                                (d) CDF of length of POST 

Fig. 9. Page lengths of HTTP requests 
 

The GET/POST parameter is a query string, which is the part of a uniform resource locator 
(URL) that contains data to be passed to servers. Because benign apps have various types, they 
may send requests to servers with variable parameter format. However, malware ask 
command update and leak private data out with fixed parameter format and usually the 
parameter lengths are fixed within a small statistical threshold. In Fig. 10, the length of 
parameter benign apps sent to servers have larger length than malware in both GET and POST 
requests. 

 

 
(a) CDF of length of GET                                (b) CDF of length of POST 

 
(c) CDF of length of GET                                (d) CDF of length of POST 

Fig. 10. Parameter lengths of HTTP requests 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3245 

5. Categorization Using Fingerprinting 
So far, this paper has shown that our HTTP flow mining approach can categorize Android 
malware appropriately. However, network operators and market providers need to have 
fine-grained knowledge about the malware families to which a particular malicious app 
belongs to and if a particular ad library is unsafe or not. The malware dataset used in this paper 
comes from Zhou et al [25], which contains 1,260 malware apps belonging to 49 different 
malware families. To address this issue, this work describes a categorization approach to 
fingerprint each malware family to aid network operators and market providers. Extracting the 
host name and the invariant part of the HTTP request as fingerprints to build similarity profiles 
for each malware family and unsafe ad library. A malware belonging to a particular malware 
family will have a similar fingerprint as the stored profile. The Host field is important since ad 
libraries usually contact the same host servers frequently and some libraries only contact one 
specific server. However, some malware authors use fast-flux DNS techniques to change the 
host name of remote servers but exhibit the same behavior across multiple flows. Therefore, in 
addition to the host name,  identify the behavior of the malware by he structural similarity of 
HTTP requests.  

For illustration, this work refers to the structure of the HTTP request shown in Fig. 7. Our 
approach to fingerprinting is as follows. First, divide the request into various components. The 
fingerprint is a three tuple },,{ npmf =  extracted from the HTTP request where m 
represents the request method, e.g., GET, POST, HEADER, p stands for page, namely the first 
part of the URL that includes the path and page name not including the parameters, n 
represents the set of parameter names, e.g., },,{ verchimein = . The parameter values do 
not consider because malware authors frequently obfuscate or encrypt them to avoid detection. 
 

Algorithm 2. Measure similarity between two fingerprint sets 
Input: 

Labeled fingerprint set, fi{m,p,n}; Unlabeled fingerprint set, fj{m,p,n}; 
1  for each ]...0[, Nifi ∈  do 

2    for each ]...0[, Mjf j ∈  do 

3      if 0).,.( ==mfmfb ji  then 

4          );,( jip ffd  

5          );,( jin ffd  

6          ;2/)),(),((),( jinjipji ffdffdffs +=  

7          if tffs ji >),(  then 

8               label jf ； 
9          else 
10            goto step 2； 
11         end if 
12      else 
13         goto step 2； 
14      end if 
15    end for 
16   end for 



3246                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

Initially, a labeled fingerprint set has been created, and this set contains fingerprints 
extracted from known malware families, each family includes one or more HTTP fingerprints. 
Let if  denotes the ith fingerprint of this family. Next, HTTP fingerprints from unknown 
malware app traffic traces have been extracted which are identified based on our detection 
method from Section 6.1, and create an unlabeled fingerprint set. To cluster similar 
fingerprints, first compare host name from each set, if the host names are matching, categorize 
the malware apps directly using the known labeled set. If not, use the similarity measurement 
algorithm shown in Algorithm 2 between the two fingerprints from the two sets to capture 
these similarities. 

Algorithm 2 first defines a Boolean function ),( ji ffb  based on request method that is 

equal to 0, which means that if  and jf  have the same value of m, e.g., both are GET or 

POST. Next, this algorithm defines Jaccard distance [26] as ),( jip ffd  and ),( jin ffd  to 

measure the similarity of p  and n between if  and jf , respectively. After the similarity 

measurement, the algorithm define the overall similarity between if  and jf  as 

2/)),(),((),( jinjipji ffdffdffs += , and if the value is above a certain threshold t , 

we categorize jf  into the same malware family as if . We experimented with different values 
of threshold and found that a threshold of 0.6 gives good accuracy. 

6. Evaluation 

6.1 Android Malware Detection 
This section describes our strategy for obtaining the data set suitable for evaluating our 
approach, the HTTP flow tracing details and the results of our classification. 
 

1) Data Collection: Toward detecting malicious traffic, this work proposes a supervised 
machine learning approach based the HTTP flow features identified in Section IV. The first 
requirement is to obtain the training data set for the benign traffic and the malicious traffic in 
order to build a suitable classifier. To obtain benign apps, this work considered a trusted 
marketplace like Google play, downloaded 4868 well-known apps, and considered the HTTP 
flows of these apps as benign. However, in contrast, it is not possible to label traffic collected 
from malware apps as malicious in a straightforward manner because 86% malware apps are 
repackaged versions of legitimate applications with malicious payloads. Therefore, malware 
apps continue communication with benign servers and these benign traffic traces get mixed 
with malicious traces, thereby affecting the detection accuracy.  

To address this issue, this work applied a blacklist to markup malicious app traffic. Our 
blacklist consists of two parts: the first contains domains associated with malware family, 
which are known to be malicious domains by security researchers, anti-virus companies and 
market providers [27], [28]. The second part is provided by MDL [29], which contains more 
than 80000 unique malicious domain names and IP addresses. Finally, this work extracted the 
same features (e.g., the features analyzed in Section 4) from both datasets to detect malware 
app and unsafe ad libraries. Let Ni

iaA ,...,1
)( }{ ==  be a set of Android app samples and 

}{ )(iaH  be the HTTP traffic trace collected by executing an Android app Aa i ∈)(  for a 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3247 

given time T , each app may generate one or more flows, )( )(i
j aflow  has been defined to 

denote each flow generated by the app. Translating each )( )(i
j aflow  into a pattern vector 

)(i
jv  containing the features from Section 4, to model how each Android app uses the network. 

Using these feature vectors to train standard classifiers from Weka toolkit [30] to classify the 
testing set and label the flows as benign or malicious. 
 

2) HTTP Flow Tracing: Using AndroCollector to execute Android apps in a real Android 
smartphone or emulator. As described in Section 3.1, the AndroCollector has two approaches 
to execute an Android app, specific and random. Using both techniques to collect the traffic 
traces as described in the following. 

Specific Execution. To determine the maximum execution time under this technique, this 
work tested this collection method using an app called HindiSMSandJokesKhazana, which is 
a book app and has a large number of activities, 414, compared with other apps in our dataset. 
The result shows that specific behavior event executes all paths during five minutes. Based on 
this result, this work set the duration of traffic collection as 5 minutes and collected the traffic 
traces on the entire dataset. This work stored the extracted features into the storage module. 
The detailed results on the entire dataset are shown in Table 7. 
 

Table 7. Traffic statistic from Android app using specific execution 
Market/Dataset #Unique 

apps 
#Unique 
domains 

#Unique IPs #Flows #HTTP flows 

Google Play 4868 3078 6683 138229 139736 
Third-party markets 4650 2614 6531 161147 159513 
Android Malware 
Genome Project 

1260 164 312 15389 15254 

 
Random Execution. To determine maximum execution time for random events, this work 

used the result from [31], where the authors found that an app accessing network consumes 
requires about 250 seconds per user. Therefore, this work sets the execution time distribution 
in the range of 1 to 300 seconds. The distribution of execution time of each app follows 
according to the Poisson Distribution. Using random execution, the summary of our traffic 
trace information is shown in Table 8. 
 

Table 8. Traffic statistic from Android app using random execution 
Market/Dataset #Unique 

apps 
#Unique 
domains 

#Unique IPs #Flows #HTTP flows 

Google Play 4868 2359 3512 54326 50226 
Third-party markets 4650 2003 3260 63337 57633 
Android Malware 
Genome Project 

1260 101 178 11940 11391 

 
Table 9 shows some examples of the activity coverage achieved by these two methods. 

Specific coverage outperforms random execution in many cases but still gives reasonable 
results. 
 
 
 
 



3248                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

Table 9. Traffic statistic from Android app using random execution 
App name Total activities Activities executed 

in specific mode 
Activities executed in 

random mode 
AccuWeather 16 14(87.5%) 3(18.75%) 
WeatherBug 35 27(77.1%) 6(17.1%) 

Wacai 82 36(43.9%) 6(7%) 
QQ 82 41(50%) 11(26.8%) 

Taobao 94 40(42.6%) 27(28.7%) 
Wochacha 127 52(40.9%) 28(22%) 

 
3) Results of Our Detection Approach: This experiment used a range of classifiers from 

Weka data mining tool kit over the training data and 14 different HTTP flow features 
discussed in Section 4.2 to build the classification model and tested the accuracy on the 
third-party apps in our data set. First, this experiment performed a 10-fold cross validation 
approach to find out which classification algorithm performs better. Moreover, this 
experiment fed HTTP flow features generated by specific and random execution into these 
classifiers for purpose of comparing detection results whether affect by different app 
execution modes.  
 

Table 10. Results of 10-fold cross validation on app traffic generated by specific execution 
Algorithm Correctly 

classified 
Incorrectly 
classified 

Precision Recall F-Measure ROC-Area Classifier 
build 
time 

J.48 98.798% 1.202% 0.988 0.988 0.988 0.961 24.06s 
RandomForest 98.909% 1.091% 0.989 0.989 0.989 0.978 29.56s 

Bayesnet 97.148% 2.852% 0.972 0.971 0.972 0.935 4.19s 
SMO 93.689% 6.311% 0.878 0.937 0.906 0.5 14.42s 
ZeroR 93.688% 6.312% 0.878 0.937 0.906 0.5 0.02s 

 
Table 11. Results of 10-fold cross validation on app traffic generated by random execution 

Algorithm Correctly 
classified 

Incorrectly 
classified 

Precision Recall F-Measure ROC-Area Classifier 
build 
time 

J.48 91.366% 8.634% 0.914 0.914 0.914 0.905 16.12s 
RandomForest 92.688% 7.312% 0.927 0.927 0.927 0.916 20.79s 

Bayesnet 90.868% 9.132% 0.908 0.928 0.908 0.889 1.87s 
SMO 87.528% 12.472% 0.858 0.875 0.866 0.5 8.63s 
ZeroR 87.528% 12.472% 0.858 0.875 0.866 0.5 0.01s 

 
The validation results are shown in Table 10, 11, Random Forest can classify more 

correctly instances, get higher precision, recall and f-measure in both execution modes. For the 
detection results, using features generated by specific execution is better than random 
execution. Because specific execution can generate more comprehensive features than random, 
Therefore, this work uses the features extracts from traffic generated by specific execution in 
the rest of experiments. 

This experiment finally tested our classification approach on the testing set of 4650 apps 
and compare with two well-known Android malware detection approaches, Drebin [3] and 
FEST [13]. Both of them use machine learning algorithms to detect Android malware based on 
static features, such as permission, API calls. The results are shown in Table 12. To verify the 
result of detection, first, this experiment recalls our assumption that apps from GooglePlay 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3249 

dataset are benign app, from malware dataset are malware app and from third-party are 
unknown. Second, this experiment uses two tools to validate our result: Androguard and Virus 
Total. Androguard is a well-known, open-source project with volunteer-submitted definitions 
and provides a lightweight signature-based malware detection tool. Virus Total is an online 
service that scans submitted files with more than 40 of up-to-date commercial anti-virus 
products and provides the results from each product. Table 12 shows that our approach 
outperforms other two approaches, which correctly classified 4537 Android apps and 
mis-labeled 16 malware as benign app. First, our approach extracts more comprehensive 
features than other two approaches. Second, our approach can capture dynamic behaviors of 
Android malware, which can be more unique than static behaviors used by FEST and Drebin. . 
This experiment also found that 16 apps have been mis-labeled as malware by our detection 
method. These results represent a low factor of error given the efficiency of our approach in 
identifying malicious flows at run-time.  
 

Table 12. Detection results comparison on testing set  
Approach Correctly classified False positive False negative 
Our approach 4537(97.67%)  16(0.34%) 92(1.98%) 
FEST 4445(95.59%) 122(2.62%) 83(1.79%) 
Drebin 4408(94.79%) 47(1.01%) 195(4.19%) 

6.2 Unsafe ad library Detection 
This experiment extracted safe ad and unsafe ad traffic from 3454 apps, in which 3423 apps 

contained 33 safe ad libraries and 23 apps contained 6 unsafe ad libraries. This experiment 
applied the extraction rules from Section 3.2 to extract ad traffic from our traffic traces, 
verified our results by deep analysis of the payload of flows and compared the results with 
those in [19]. After verification, sosceo, plankton, waps and enerysource are unsafe libraries 
can be found. Table 13 shows the results of applying our HTTP flow classification approach 
on this data set. 
 

Table 13. Results of 10-fold cross validation on ad library traffic 
Algorithm Correctly 

classified 
Incorrectly 
classified 

Precision Recall F-Measure ROC-Area Classfier 
build 
time 

J.48 98.889% 1.11% 0.988 0.989 0.989 0.922 0.76s 
RandomForest 99.121% 0.879% 0.991 0.991 0.991 0.951 1.28s 

Bayesnet 95.967% 4.033% 0.973 0.96 0.965 0.9 0.18s 
SMO 97.202% 2.798% 0.945 0.972 0.958 0.5 1.68s 
ZeroR 97.202% 2.798% 0.945 0.972 0.958 0.499 0.01s 

 
In the testing set, this experiment used 2724 apps downloaded from several popular 

third-party markets, such as ZOL, Hiapk and so on, which generated 16818 HTTP flows in 
total. Note that, an ad library may be embedded in multiple apps and an app might contain 
several ad libraries. Therefore, this experiment classify the ad traffic with respect to the 
number of flows and not with respect to the number of apps. Table 14 shows the results of our 
classification technique using multiple classifiers, among which Random Forest gives the best 
possible performance. 
 
 
 



3250                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

Table 14. Results of ad library traffic testing set classification 
Algorithm Correctly 

classified 
False positive False negative Time 

J.48 15513(92.24 %) 490(2.91%) 815(4.85%) 2.9s 
RandomForest 16121(95.86%) 329(1.95%) 368(2.19%) 3.3s 

Bayesnet 15310(91.03%) 1069(6.36%) 439(2.61%) 3.3s 
SMO 15611(92.82%) 498(2.96%) 709(4.22%) 1.9s 
ZeroR 15611(92.82%) 498(2.96%) 709(4.22%) 1.2s 

6.3 Results of Categorization 
To evaluate our categorization approach, this experiment focuses on the malware which 

have been identified by our detection Table 15 shows the results of our categorization. The 
table shows a distribution of 75 apps which are clustered into the corresponding malware 
family. Noting that the most prevalent malware family in our Android app dataset was 
DroidKungfu. This malware is capable of rooting the vulnerable Android phones and may 
successfully evade the detection from current mobile anti-virus software.  
 

Table 15. Results of categorizing Android malware 
Malware family # of apps 

ADRD 3 
DroidDreamLight 6 

DroidKungfu 50 
GoldDream 6 

Plankton 10 

 
Fig. 11. Accuracy of malware app Categorization 

 
To further demonstrate our categorization method, this experiment selected 10 popular 

malware families from the 49 malware families of our dataset, which use the HTTP-based web 
traffic to receive bot commands from their C&C servers. This experiment used 
AndroCollector to collect traffic from malware contain in the 10 malware families, extracted 
the host names and fingerprints from malware traffic traces and applied Algorithm 2 to 
categorize them. Fig. 11 shows the results our categorization approach. Fig. 11 can conclude 
that host names in HTTP headers can categorize malware. Especially, 11 malware in Plankton 
have been categorized by using the host name. However, only 72.2% of malware were 
successfully categorized by using host name, which means that the host name is not sufficient 
for all malware and relied on the similarity algorithm to categorize other malware. These 
results show the validity of our categorization approach in providing useful information to the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3251 

network operators regarding various malware infection classes and targets. 

7. Conclusion 
This paper proposed a novel method to detect and categorize Android malware and unsafe ad 
libraries based on HTTP traffic flow mining. First, this paper designed AndroCollector, to 
capture traffic traces automatically, which can eliminate the manual labor involved in 
executing an app under various conditions and user interactions. Next, this paper extracted 
HTTP traffic characteristics for malware apps and applied state machine model to extract ad 
traffic from the mixture of Android app network traffic traces. This paper provided a detailed 
analysis of the HTTP traffic characterization and showed the correlation to app behavior. This 
paper applied classification algorithms to detect malware and unsafe ad libraries based on 
several HTTP flow features. Finally, this paper extracted host name and invariant parts of 
HTTP request headers as fingerprints to categorize malware and the unsafe ad libraries. Our 
categorization helps market providers in making informed decisions when dealing with 
specific malware incidents. Our comprehensive evaluation shows that our method has high 
accuracy and validates our approach can characterize Android malware behavior. 

8. Acknowledgement 
This work is supported by the Research Foundation of Education Bureau of Hunan Province, 
China(No.16B085, No.16C0047), the Science and Technology Projects of Hunan Province 
(No.2016JC2074, No.2016JC2075), the Open Research Fund of Key Laboratory of Network 
Crime Investigation of Hunan Provincial Colleges(No.2016WLFZZC008), the National 
Science Foundation of China(No.61471169), the Key Lab of Information Network Security, 
Ministry of Public Security (No.C16614). 

References 
[1] McAfee. http://www.mcafee.com, 2012. 
[2] Antonio Bianchi Christopher Kruegel Sebastian Poeplau, Yanick Fratantonio and Giovanni Vigna, 

“Execute this! analyzing unsafe and malicious dynamic code loading in android applications,” in 
Proc. of Network & Distributed System Security Symposium, 1-16, 2014. Article (CrossRef Link). 

[3] Malte Hubner Hugo Gascon Daniel Arp, Michael Spreitzenbarth and Konrad Rieck, “Drebin: 
Effective and explainable detection of android malware in your pocket,” in Proc. of Network & 
Distributed System Security Symposium, 2014. Article (CrossRef Link). 

[4] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: Multilayer profiling of android 
applications,” in Proc. of the 18th annual international conference on Mobile computing and 
networking, 11(1): 137-148, 2012. Article (CrossRef Link). 

[5] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W Lee, “The core of the matter: Analyzing 
malicious traffic in cellular carriers,” in Proc. of Network & Distributed System Security 
Symposium, 2013.  

[6] N. Vallina-Rodriguez, J. Shah, A. Finamore, H. Haddadi, and et al., “Breaking for commercials: 
Characterizing mobile advertising,” in Proc. of the 2012 Internet Measurement Conference, 
343-356, 2012. Article (CrossRef Link). 

[7] T.T.T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using 
machine learning,” Communications Surveys Tutorials, IEEE, 10(4):56–76, 2008. 
Article (CrossRef Link). 

http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28c1890ea06b8887bb%29%20Network%20%26%20Distributed%20System%20Security%20Symposium&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://dx.doi.org/10.14722/ndss.2014.23328
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28c1890ea06b8887bb%29%20Network%20%26%20Distributed%20System%20Security%20Symposium&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28c1890ea06b8887bb%29%20Network%20%26%20Distributed%20System%20Security%20Symposium&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.1145/2348543.2348563
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28c1890ea06b8887bb%29%20Network%20%26%20Distributed%20System%20Security%20Symposium&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%28c1890ea06b8887bb%29%20Network%20%26%20Distributed%20System%20Security%20Symposium&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://dx.doi.org/10.1145/2398776.2398812
http://dx.doi.org/10.1109/SURV.2008.080406


3252                                                                        Su et al.: De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining 

[8] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: automatic protocol reverse engineering from 
network traces,” in Proc. of 16th USENIX Security Symposium on USENIX Security Symposium, 
2007. 

[9] P. Royal, “Analysis of the kraken botnet,” Technical report, Damballa Labs, 2008. 
[10] S. Hao, N. Feamster, and R. Pandrangi, “An internet wide view into dns lookup patterns,” 

Technical report, Verisign Labs, 2010. 
[11] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “Dns performance and the effectiveness of 

caching,” IEEE/ACM Trans. Netw., 10(5):589–603, 2002. Article (CrossRef Link). 
[12] Xin Su, Dafang Zhang, Wenjia Li, and Kai Zhao, “A Deep Learning Approach to Android 

Malware Feature Learning and Detection,” in Proc .of Trustcom 2016: 244-251, 2016. 
Article (CrossRef Link). 

[13] K. Zhao, D.F. Zhang, X. Su, and W.J. Li, “Fest: A feature extraction and selection tool for android 
malware detection,” in Proc .of 2015 IEEE Symposium on Computers and Communication, 
714-720, 2015. Article (CrossRef Link). 

[14] Bin Gu and Victor S. Sheng, “A Robust Regularization Path Algorithm for ν-Support Vector 
Classification,” IEEE Transactions on Neural Networks and Learning Systems, 1:1-8, 2016. 
Article (CrossRef Link). 

[15] Yuhui Zheng, Byeungwoo Jeon, Danhua Xu, Q.M. Jonathan Wu, and Hui Zhang, “Image 
segmentation by generalized hierarchical fuzzy C-means algorithm,” Journal of Intelligent and 
Fuzzy Systems, 28(2):  961-973, 2015. Article (CrossRef Link). 

[16] Xuezhi Wen, Ling Shao, Yu Xue, and Wei Fang, “A rapid learning algorithm for vehicle 
classification,” Information Sciences, 295(1): 395-406, 2015. Article (CrossRef Link). 

[17] Bin Gu, Victor S. Sheng, Zhijie Wang, Derek Ho, Said Osman, and Shuo Li, “Incremental learning 
for ν-Support Vector Regression,” Neural Networks, 67: 140-150, 2015. Article (CrossRef Link). 

[18] Gu Bin, Victor S. Sheng, and Shuo Li, “Bi-parameter space partition for cost-sensitive SVM,” 
in Proc. of the 24th International Conference on Artificial Intelligence, 3532-3539, 2015 
 Article (CrossRef Link). 

[19] M. C. Grace, W. Zhou, X. Jiang, and A. Sadeghi, “Unsafe exposure analysis of mobile in-app 
advertisements,” in Proc. of the fifth ACM conference on Security and Privacy in Wireless and 
Mobile Networks, 101-112, 2012. Article (CrossRef Link). 

[20] H. Haddadi, P. Hui, and L. Brown, “Mobiad: private and scalable mobile advertising,” in Proc. of 
MobiArch, 2010. Article (CrossRef Link). 

[21] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis, “Serving ads from localhost for 
performance, privacy, and profit,” in Proc. of Hot Topics in Networking, 2009. 

[22] Monkeyrunner. http://developer.android.com/tools/help/monkeyrunnerconcepts.html, 2012. 
[23] Hierarchy Viewer. http://developer.android.com/tools/help/hierarchy-viewer.html, 2010. 
[24] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in Proc. of 

the 2012 IEEE Symposium on Security and Privacy, 95-109, 2012. Article (CrossRef Link). 
[25] Zhangjie Fu, Xingming Sun, Qi Liu, Lu Zhou, and Jiangang Shu, “Achieving Efficient Cloud 

Search Services: Multi-keyword Ranked Search over Encrypted Cloud Data Supporting Parallel 
Computing,” IEICE Transactions on Communications, E98-B(1): 190-200, 2015. 
Article (CrossRef Link). 

[26] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in 
high dimensions,” Commun. ACM, 51(1):117–122, 2008. Article (CrossRef Link). 

[27] AnserverBot. “Security alert: Anserverbot,” new sophisticated android bot found in alternative 
android markets, 2012. Article (CrossRef Link). 

[28] DroidKungFu, http://www.fortiguard.com/encyclopedia/virus/android droidkungfu.a!tr.html, 
2012. 

[29] MDL. http://www.malwaredomainlist.com/ mdl.php. 
[30] Weka. http://www.cs.waikato.ac.nz/ml/weka/. 
[31] Q. Xu, J. Erman, A. Gerber, Z.Q Mao, J. Pang, and S. Venkataraman, “Identifying diverse usage 

behaviors of smartphone apps,” in Proc. of the 2011 ACM SIGCOMM conference on Internet 
measurement conference, 329-344, 2011. Article (CrossRef Link). 

http://dx.doi.org/10.1109/TNET.2002.803905
http://dx.doi.org/DOI:%2010.1109/TrustCom/BigDataSE/ISPA.2016.69.
http://dx.doi.org/10.1109/ISCC.2015.7405598
http://dx.doi.org/DOI:%2010.1109/TNNLS.2016.2527796.
http://dx.doi.org/10.3233/IFS-141378
http://dx.doi.org/10.1016/j.ins.2014.10.040
http://dx.doi.org/10.1016/j.neunet.2015.03.013
http://dx.doi.org/10.14722/ndss.2014.23328
http://dx.doi.org/10.1145/2185448.2185464
http://dx.doi.org/10.1145/1859983.1859993
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1587/transcom.E98.B.190
http://dx.doi.org/10.1145/1327452.1327494
http://www.csc.ncsu.edu/faculty/jiang/anserverbot
http://dx.doi.org/10.1145/2068816.2068847


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 6, June 2017                                          3253 

 
 

Xin Su received his Ph.D degree from college of Information Science and Electronic 
Engineering, Hunan University, Changsha, China, in 2015. He is currently a Lecture at 
the Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan 
Police Academy, Changsha, China. His research interests include network security, 
mobile phone security, big data mining. 

 
 

Xuchong Liu received his Ph.D degree from school of Information Science and 
Engineering, Central South University, Changsha, China, in 2010. He is currently a 
Professor at the Hunan Provincial Key Laboratory of Network Investigational 
Technology, Hunan Police Academy, Changsha, China. His research interests include 
Information security, network security, big data analysis. 

 
 

Jiuchuang Lin received his Master degree from Fudan University, Shanghai, China, in 
2011. He is currently a vice director at the Key Lab of  Information Network Security of 
Ministry of Public Security, the Third Research Institute of Ministry of Public Security, 
Shanghai, China. His research interests include computer bud mining, system security 
assessment. 

 
 

Shiming He received her Ph.D degree from Hunan University, Changsha, China, in 
2013. She is currently a lecture at Changsha University of Science and Technology, 
Changsha, China. Her current research interests include privacy preserving, wireless 
network and mobile computing. 

 
 

Zhangjie Fu received his Ph.D degree from Hunan University, Changsha, China, in 
2012. He is currently a vice professor at School of Computer and Software, Nanjing 
University of Information Science & Technology, Nanjing, China. His research interests 
include cloud computing, Android security and big data security. 

 

Wenjia Li received his Ph.D degree from University of Maryland Baltimore County in 
2011. He is currently an assistant professor at New York Institute Technology. His 
research interests include cyber security, mobile computing. 

 


