• Title/Summary/Keyword: Traction Motor Drive Systems

Search Result 20, Processing Time 0.023 seconds

Speed Control for PMSM in Elevator Drive System Using Fuzzy Controller (퍼지제어기를 이용한 엘리베이터 구동용 영구자석형 동기전동기의 속도제어)

  • Hwang S. M.;Yu J. S.;Won C. Y.;Kim K. S.;Choi S. W.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.655-659
    • /
    • 2004
  • This paper proposes a fuzzy logic based vector control for the gearless traction machine drive systems using a permanent-magnet synchronous motor (PMSM). The performance of the proposed Fuzzy Logic Control(FLC)-based PMSM drive are investigated and compared to those obtained from the conventional PI controll-based drive system. We have confirmed theoretically and experimentally at different dynamic operating conditions such as step change in command speed, step change in load, etc. The comparative experimental results show that the FLC is more robust and, hence, found to be a suitable replacement of the conventional Pl controller for the high-performance elevator drive system.

  • PDF

A PWM Strategy for Noise Reduction of Inverter-Induction Motor Drive System (인버터-유도전동기 구동시스템의 소음 저감을 위한 PWM 방식)

  • Seo, Young-Min;Lee, Ju-Hoon;Yoon, In-Sik;Park, Young-Jeen;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.398-402
    • /
    • 1999
  • In PWM inverter fed traction motor drive systems, the switching frequency is restricted and thus the electromagnetic acoustic noise is generated. To reduce such an audible noise, we propose the modified RSF(Randomized Switching Frequency)-PWM method. In the proposed RSF-PWM method, both triangular wave and sawtooth wave are used in one period as carrier waves. Because the proposed method has inherently the same property as sinusoidal PWM method, there is no problem of linearity. To verify the validity of the modified RSF-PWM method, computer simulations are carried out.

  • PDF

Actuator Control of Throttle Valve of An Automobile

  • Lee, Kyung-Moon;Lee, Jung-Yong;Kim, Gun-Tae;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.602-607
    • /
    • 2004
  • Accurate and quick positioning of the throttle valve in driving situation is required to implement the Traction Control System(TCS). Also, unlike a conventional throttle valve which is connected to the accelerator directly by a wire, an Electronic Throttle Valve(ETV) is driven by a DC motor and can move dependently upon the accurate position of the accelerator. In the research, the Electronic Throttle Body(ETB) and Controller for TCS application was developed. In order to drive the DC motor, the developed controller was built and interfaced to the ECU and ETB. The PID position control algorism and developed systems are designed to realize the robust tracking control of the ETV. Actual vehicle tests with these systems and PID position control algorithm. Finally, the performance of the proposed those are evaluated with the experimental studies.

  • PDF

Nonlinear Observer-based Control of Synchronous Machine Drive System

  • Sundrica, Marijo;Erceg, Igor;Maljkovic, Zlatko
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1035-1047
    • /
    • 2015
  • Starting from a new dynamic system description novel synchronous machine deterministic observers are proposed. Reduced and full order adaptive observer variations are presented. Based on the feedback linearization control law and the use of deterministic observer a novel control system is built. It meets the requirements of high performance tracking system. Adaptivity to stator and rotor resistance and the torque sensorless application is included. The comparison of the proposed novel control with conventional linear and nonlinear control systems is discussed. The given simulational study includes complete drive system integration.

The Influence on Traction Return Current by Pantograph Detachment Frequency of High-speed Train (고속철도차량의 이선빈도가 귀선전류에 미치는 영향)

  • Lee, Sung-Gyen;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.8-13
    • /
    • 2014
  • Currently it is major problem of electric railway with increasing drive speed such as the arc generated by the pantograph detachment and the distortion current in the motor-block high speed switching. When physical contact between the pantograph and the catenary line is separated, the pantograph detachment arcing occurs and it makes up the conductive noise to the return feeder. We made the EMTP modeling of the railway traction system and the pantograph arc by circuit elements and switches. The influence of pantograph detachment frequency is investigated by changing some frequencies. The over-current occurs in each detachment and it oscillates some time at beginning and stabilizes gradually. The magnitude of over-current is decided by instantaneous value of existing traction return current. If the detachment occurs at a point of peak value or distortion current, the over-current will be more harmful to the power systems connected with the return feeder and will become to arise with increasing detachment frequency.

Development of the High Performance Inverter(300KVA) for Urban Transit Magnetic levitation Vehicles (자기부상열차용 추진용 인버터(300KVA)에 관한 연구)

  • Kim, Suk-Ki;Cho, Sung-Jin;Chung, Jin-Heung;Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.626-629
    • /
    • 1997
  • The urban transit propelled by single sided linear induction motor(SLIM) have been in stage for practical application. Also, the use of the linear induction motor in traction systems enables large forces to be achieved without friction between wheels and rails. In this paper we discuss the linear induction motor (LIM) drive system (300KVA) for magnetic levitation vehicles.

  • PDF

Magnetic Levitated Electric Monorail System for Flat Panel Display Glass Delivery Applications (FPD 공정용 Glass 이송 시스템을 위한 자기부상 EMS의 개발)

  • Lee, Ki-Chang;Moon, Ji-Woo;Koo, Dae-Hyun;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.566-572
    • /
    • 2011
  • In recent semiconductor and FPD (Flat Panel Display) manufacturing processes, high clean-class delivery operation is required more and more for short working time and better product quality. Traditionally SLIM (Single-sided Linear Induction Motor) is widely used in the liner drive applications because of its simplicity in the rail structure. A magnetically levitated (Maglev) unmanned vehicle with SLIM traction, which is powered by a CPS (Contactless Power Supply) can be a high precision delivery solution for this industry. In this paper unmanned FPD-carrying vehicle, which can levitate without contacting the rail structure, is suggested for high clean-class FPD delivery applications. It can be more acceptable for the complex facilities composed with many processes which require longer rails, because of simple rail structure. The test setup consists of a test vehicle and a rounded rail, in which the vehicle can load and unload products at arbitrary position commanded through wireless communications of host computer. The experimental results show that the suggested vehicle and rail have reasonable traction servo and robust electromagnetic suspensions without any contact. The resolution of point servo errors in the SLIM traction system is accomplished under 1mm. The maximum gap error is ${\pm}0.25mm$ with nominal air gap length of 4.0mm in the electromagnetic suspensions. This type of automated delivery vehicle is expected to have significant role in the clean delivery like FPD glass delivery.

A Study on Electrical-Inertia System For Traction System (추진장치 시험을 위한 전기적 관성 부하 구현에 관한 연구)

  • Kim, Gil-Dong;Han, Young-Jae;Park, Hyun-Jun;Jho, Jeong-Min;Jang, Dong-Uook;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1079-1081
    • /
    • 2001
  • A propulsion system apparatus is needed for a railroad vehicle to test and estimate propulsion performance. The electrical inertia simulator to facilitate the development and testing of propulsion systems, is presented in this paper. It is based on a vector-controlled induction motor drive supplied from the AC mains through a double PWM converter that provides desirable features such as bi-directional power flow, nearly unity power factor and low harmonic factor at the AC mains. A theoretical analysis is first presented, followed by a detailed simulation study to assess the overall system performance under dynamic conditions.

  • PDF

Energy Conversion System using a Novel Multi-Mode DC/DC Converter for Hybrid Electric Vehicles (새로운 멀티 모드 DC-DC 컨버터를 이용한 하이브리드 전기자동차용 전력변환 시스템)

  • Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2013
  • The rapidly growing demand for electric power systems in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require simpler, cost-effective, and higher performance components. In this paper, a novel power conversion system for hybrid electric vehicles is proposed for these needs. The proposed power conversion system reduces the conversion system cost while preserving same functionality. The proposed power conversion system can boost multi-sources to drive a traction motor and to store energy at the same time reducing number of switching components. In this paper, all operational modes of the proposed converter are explained in detail and verified by a computer simulation first. Then, the topology and operational modes are experimentally verified. Based on the results, the feasibility of the proposed multi-mode single leg power conversion system for EV and HEV applications is discussed.

Analysis for Main Properties of basic characteristic of HEMU-400x (차세대 고속전철시스템 주요기술 특성 분석)

  • Park, Choon-Soo;Choi, Sung-Hoon;Han, In-Soo;Kim, Sang-Soo;Lee, Tae-Hyung;Kim, Ki-Whan
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.173-179
    • /
    • 2009
  • High-speed railway is important transportation in the world because it has a lot of merits like as very comfortable, environmental benefits, energy savings, etc. The increase of demand for high-speed railway influence to develop of new hish-speed trains. Many countries introduced new high-speed train in the market and it meets to the market's needs. They adopt new technology and systems like that active suspension, synchronous permanent magnetic motor, distributed drive system, aero acoustics, etc. In Korea, the project for R&D of new high-speed train is launched in 2007. We need analysis for main properties of new high-speed train(HEMU-400x). This paper presents the comparisons, analyzed characteristics of main properties like as traction system and braking system. In this analysis, we can know our technical position in the world and what is important to focus on the development. It is very useful to develop a next generation high-speed train in Korea.

  • PDF