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Abstract – Starting from a new dynamic system description novel synchronous machine deterministic 
observers are proposed. Reduced and full order adaptive observer variations are presented. Based on 
the feedback linearization control law and the use of deterministic observer a novel control system is 
built. It meets the requirements of high performance tracking system. Adaptivity to stator and rotor 
resistance and the torque sensorless application is included. The comparison of the proposed novel 
control with conventional linear and nonlinear control systems is discussed. The given simulational 
study includes complete drive system integration. 
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1. Introduction 
 
This work examines a novel control method for variable 

speed operation of a synchronous machine. Here, it is 
assumed that the synchronous machine (SM) has damper 
windings and a separate excitation winding.  

Variable speed operation of SM is used in various 
cases of power generation and electric drive applications. 
In windmill power generation and in hydro power units, 
variable speed operation is a design requirement. SM drive 
finds particular applications in: coal mines, the metal and 
cement industries, ship propulsion etc. Because of the 
salient poles, a large number of coupled variables and high 
nonlinearity, the SM is a complex dynamic system with a 
number of unknown state variables. To obtain a high 
performance tracking system it is necessary to have an 
adequate observer for these states, as is done in similar 
AC drive systems [1]. There are not many studies, either 
linear (vector) or nonlinear, of the SM control system.  

AC motor vector control is used with the following 
assumption: if the flux is constant, the q-current component 
can control electromagnetic torque. For induction motor 
drives this assumption holds true, but if this method is used 
for SM control the q-current component will essentially 
change the flux [2]. In this case it is said that the control is 
coupled and this is why SM vector control is not efficient 
enough. There are few ideas on how to solve this problem. 
One involves coordinate transformation [3, 4]. Unfortunately, 
a control system with many calculations (coordinate 
transformations, PI controllers, and other) has to be used. 

Because of its complexity, further development of this 
control does not look promising. In standard SM control 
systems the damper winding effect is neglected. It is well 
known that damper windings have positive influence on 
SM stability at power system nominal operation. Its 
importance in asynchronous starting process is also known. 
During synchronous starting its effect has not been studied 
yet, but it would be of interest especially in the case of high 
performance drives.  

Regarding nonlinear control SM applications, a few 
methods are used: backstepping [5], passivity [6] and 
adaptive Lyapunov based [7, 8]. The passive method [6] 
fails to give better results and the backstepping [5] method 
fails to take the damper windings into consideration. In 
[7, 8] new algorithms are proposed, but their complexity 
seems to make implementation impractical.  

In general practice, the stability in many nonlinearly 
controlled AC drives is proved by Lyapunov [9]. This is 
done for the observer as for the whole system (observer + 
controller) [10-13] if necessary. Except for the missing 
states, the control also includes parameter variation. To 
achieve this, many different control methods are combined 
with various observers. For example, forced dynamic 
control is combined with sliding mode observer or model 
reference system [14-17]. Stability can be achieved for 
winding resistance change [18] or change of inductance 
and motor inertia [19]. Also, sensorless control can be 
achieved in regard to load torque [20-22] or rotor speed 
[23, 24]. The aim of this work is to use nonlinear 
techniques to develop a novel control system for SM. By 
using completely decoupled control law and by taking into 
consideration the effect of damper windings, the resulting 
control system is made more advantageous than the 
existing SM control systems.  

This paper is organized so as to give the complete 
control system modeling: the SM system and its observ-
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ability analysis, observer and control law definitions and 
internal dynamics analysis. An extensive simulation 
study is then presented. The results of various observer 
applications and also the comparisons with linear and 
nonlinear control systems are given. 

  
 

2. Modeling 
 

2.1 SM system 
 
In order to take into consideration the effect of the 

damper winding, the system given in (1) will be the 
starting point of analysis.  
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Coefficients a1, a2 etc. are calculated from SM 

parameters: 
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2.2 Observability analysis 

 
Observability of the given system (1) is analysed. Here, 

measured states are given as: 
 

h1=id, h2=if, h3=iq, h4=ω. 
 
The analysis is based on nonlinear system local weak 

observability concept [25, 26].  
Assume a nonlinear dynamical system Σ (2): 
 

 Σ:
dx   f (x,u)   
dt
y h(x)   

=

=
 (2) 

 
In a point from its state space x0ϵΏ its observability 

matrix is (3):  
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is observability criterion matrix and Lk

f is the k-th order Lie 
derivative of the function h with respect to the vector field 
f. If the matrix O has full rank 
 

rank {O}=n 
 
than the state of the system Σ is locally weakly observable 
at point x0.  

A number of possible submatrices can be tested, but 
choosing matrices given in (5) and (6) it will be easy to 
make a proof.  
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O1 determinant is: 
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O2 determinant is: 
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  Det O2≠0, for ω=0 
 
Considering both conditions: 
Det (O1) ≠0 U Det (O2) ≠0 => rank{O}=6 

Matrix O is a full-rank matrix and it can be concluded 
that the system is weakly locally observable at every point 
of state space Ώ. 

 
2.3 Deterministic observers 

 
After the successful observability analysis, an observer 

can be constructed. Damper winding fluxes are missing 
states. In addition to observing the missing states, it would 
be preferable for the observer to be adaptive to parameter 
changes. 

A new observer adaptive to stator and rotor winding 
resistance is presented.  

The idea is to extend (1) in a way that stator and rotor 
resistances can be separately collected. The resulting 
system is given in (7). 
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Coefficients a1, a2 etc. are very similar to the already 
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given coefficients.  
Consider this observer (8):   
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It is Lyapunov stable because c3 and f2 are always 

negative for SM. 
Although the observer is simple and stable, it is of a 

reduced order and because of this it is not possible to prove 
global stability of the whole system. 

Proposition: For the SM model given in (7), a full order 
stable observer adaptive to stator and rotor resistance 
change is given in (9). 

Proof: Consider Lyapunov function given in (10). It is 
positive-definite. 
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Error dynamics is defined as (7) - (9) and is given in (11). 
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State errors are:  
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and resistance errors: ΔRs and ΔRf.  

Now consider Lyapunov function differential taking into 
account its error dynamics (11) and the usual assumption of 
slow resistance change: 
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and resistance adaptive rules (12), (13): 
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Lyapunov function differential is obtained (14): 
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it is negative-definite and according to Lyapunov direct 
method global asymptotic stability of the observer is 
proved. 

 
2.4 Control law 

 
The aim of nonlinear control is to achieve decoupling 

between flux and torque controls. As already stated, the 
feedback linearization method is chosen. 

The control demand is to make a tracking system of two 
outputs (15): rotor speed, and square of stator magnetic 
flux: 
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 ,  ϕϕ qd are stator magnetic fluxes; not to be mis- 

interpreted as  ,  ϕϕ QD  that are damper winding fluxes 
used as state variables.  

Although it is possible to include excitation control, 
excitation voltage will remain constant. 

It is necessary to separate the first output into two 
variables; so a new one 11ĥ  (electromagnetic torque) is 
introduced.  

After some algebra, the system will get the form of (16): 
 

 
11

11    

2
2

G
f d

q
f

L h uh
uL h

h

∧
•⎡ ⎤

⎡ ⎤∧⎢ ⎥ ∧⎢ ⎥ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ∧• ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦∧∧ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

= +  (16) 

 

where G is decoupling matrix: 
11111 2

21 22

.g g

g g

G
L hL h

L h L h

∧∧

∧ ∧

⎤⎡
⎥⎢
⎥⎢
⎥⎢
⎥⎢⎣ ⎦

= . 

Now, after the control law (17) is defined: 
 

 -1
11 11 71 811

   

22 92

G
ref refpfd

q
refpf

h h ek eL hu
u

hk eL h

•⎡ ⎤∧
⎢ ⎥∧⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥•∧⎢ ⎥⎣ ⎦ ⎢ ⎥∧⎢ ⎥
⎣ ⎦

−− + +

− +−
 (17) 
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with errors:
7 8 11 91 11 21 2 -   ; - ; -  refref refe h e h e hh h h

∧ ∧ ∧

= = = . 
Similarly to [27], error dynamics is gained and 

decoupling is achieved (18): 
 

 
8 77 0

  8 71
8

92
9

p

p

p

e e k e
k e ee
k e

e

•⎡ ⎤
⎢ ⎥ ⎡ − ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥• ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥•⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

− −

−
 (18) 

 
It is easy to make the Lyapunov proof of this error 

dynamics as well as to prove the convergence of the whole 
system (observer + controller). Consider positive-definite 
Lyapunov function V2 (19):  

 

 2 2 2
2 7 8 9

1 1 1      
2 2 2

V e e e= + +  (19) 

 
By using positive coefficients kp0, kp1 and kp2, the 

differential of V2 is negative-definite and global asymptotic 
stability of the control law is obtained according to 
Lyapunov direct method.  

Both functions V1  and V2 are Lyapunov stable, and it is 
concluded that dynamics of the entire system (V1+ V2 ) is 
stable. 

 
2.5 Internal dynamics 

 
It is not possible to obtain exact linearization for the SM 

system as well as some similar systems such as the 
induction motor [28]. That is why partial input-output 
linearization has been applied. The relative degree of the 
system is lower than the system order, so it is necessary to 
check the system’s internal dynamics.  

In the well known theorem of bounded function it is 

stated that the sum and product of bounded functions is 
also a bounded function. The reverse is also valid. 

In this system, the second output (that is of course 
bounded by the reference) is the sum and product 
composition of state variables (20):  

 

 ( ) ( )22
2 1 2 3 54D Qqh l i l i l l i ld f φ φ= + + + +   (20) 

 
Because the first output h1 is ω, and it is also bounded by 

the reference, all state variables are included and it can be 
concluded that all internal dynamics are bounded. 

To achieve global stability, decoupling matrix G has to 
be globally invertible. Its determinant is (21): 

 

 2 2
32 41 d q( )    qd d qDet G m ii mm mφ φ φ φ= −+ −  (21) 

 
According to the motor parameters given in the next 

paragraph (21) becomes (22). 
 

 2 2
d q    7.11( ) 7.11 34.3 50.8d d qqiDet G i φ φ φ φ+ − −=  (22) 

 
It is not possible to eliminate the first two members in 

(21), (22) and to theoretically claim global stability, but in 
all control demands described in the following paragraphs, 
the determinant always remains far from singularity. 

 
 

3. Simulation Model 
 
Previous considerations are outlined in the control 

scheme shown in Fig. 1.  
At first, it is necessary to do Park transformation to 

current and voltage measurements. The adaptive observer 
then computes all observed states and parameters. Taking 

 
Fig. 1. Control scheme 
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into consideration references and observed values, the 
feedback linearization control law calculates reference 
voltages. Signals for inverter control are then generated by 
modulation technique. Modulation is done by space vector 
pulse width modulation (SVPWM). Symmetrical pattern 
with a switching frequency of 3 kHz is used. The sampling 
time of the discretized control system is 12 kHz. 

At the output of the voltage source inverter (VSI) an 
RLC filter is typically used. In this study some standard 
filter values are taken. 

Simulations are done by either variable-step of fixed-
step solvers. Various precision levels according to step size 
and tolerances can be set. 

The system is usually described in Per Unit System 
values, and so this system will be used in this case too. 

Nominal parameters of the SM are given as Per Unit 
values on the SM’s stator basis; it will be necessary to 
calculate excitation voltage and reactor inductivity on the 
same basis.  

SM nominal values of power, voltage, frequency, pole 
pairs and inertia constant are:  

Sn = 8,1 kVA, Un = 400 V, fn =50 Hz, p=2, H = 0,1406 s. 

Stator winding (p.u.) values are:  
rs = 0,082, Lσ= 0,072, Lmd = 1,728, Lmq= 0,823. 

Excitation winding (p.u.) values are:  
rf = 0,0612, Lσf = 0,18. 

Damper winding (p.u.) values are:  
rD = 0,159, LσD = 0,117, rQ = 0,242, LσQ = 0,162. 

Filter reactor (p.u.) value is: Lreact = 0,158. 
 
 

4. Control with Full Order Observer 
 
The results are given in the following figures. They 

show very accurate performance during the speed reversing 
process (Fig. 2 - rotor speed, Fig. 3 - rotor speed error). 
The square of stator flux is also accurately controlled (Fig. 
4 - square of stator flux, Fig. 5 - square of stator flux  
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Fig. 2. Rotor speed 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time (s)

ro
to

r 
sp

ee
d 

er
ro

r 
(p

 u
)

 
Fig. 3. Rotor speed error 
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Fig. 4. Square of stator flux 
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Fig. 5. Square of stator flux error 
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Fig. 6. Damper D-axis flux 
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Fig. 7. Damper D-axis flux error 
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Fig. 8. Damper Q-axis flux 
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Fig. 9. Damper Q-axis flux error 
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Fig. 10. Rotor resistance adaptation 
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Fig. 11. Stator resistance adaptation 

 
error). The flux observer also gives accurate results. Fig. 6 
shows observed and ideal value of damper D axis flux 
and Fig. 7 shows its observation error. In Figs. 8 and 9 the 
corresponding values in Q axis are shown. Although 
resistance adaptability has to be checked in the experiment; 
in this simulation initial values are set far from the SM 
model values and, as expected, they approach to the 
constant model values (Figs. 10 and 11). 

 
 

5. Control with Reduced Order Observer 
 
Although the results obtained by full order observer are 

very accurate, an observer still has certain complexity and 
more importantly it needs load torque knowledge to obtain 
high level accuracy.  

If the reduced order observer is used it is possible to 
overcome these obstacles. The observer (8) is simple, it 
does not need voltage measurements and load torque 
estimation scheme (Fig. 12.) can be implemented.  

 
Fig. 12. Load torque estimator 
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Fig. 13. Rotor speed error 
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Fig. 14. Electromagnetic torque 
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Fig. 15. D-axis flux-comparison 
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Fig. 16. Q-axis flux-comparison 
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Fig. 17. Load torque-comparison 
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Fig. 18. Load torque estimation error 

 
The estimator contains rotor speed calculation according 

to the rotor speed dynamics given in (23).  
 

 
1 2 3 4 5ˆ QDd q f q q d Lg g g g gi i i i i i Tφφω

∧∧ ∧•

= + + + +  (23) 
 
To check the control’s performance, load torque step 

up and step down changes (after the motor starting) have 
been simulated. Once again, the simulation results 
indicate very accurate performance. In Figs. 15 and 16 flux 
components are given. Estimated load torque (Fig. 17) and 
its error (Fig. 18) show accurate performance. As a result 
of the aforementioned, load torque changes have not had an 
impact on the tracking system; Fig. 13 gives rotor speed 
error while Fig. 14 gives electromagnetic torque.  

 
 

6. Comparison Between Linear and Novel  
Control 

 
The comparison has been done under identical conditions 

with both systems being in the same simulation model 
with the same settings. Identical simulation model blocks 
and parameters are used in both systems. The only 
difference is the control law block. In the linear control 
system, instead of the feedback linearization control law 
given and explained in the previous paragraphs, linear 
vector control law is implemented. It contains two loops 
(Fig. 19): the first for flux control that has one PI controller, 
and the second for speed control that has two PI controllers 
(one for speed and one for toque control). As in typical 
vector control, flux is controlled by d-current component 

Fig. 19. Vector control scheme 
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and speed is controlled by q-current component. 
Reference voltage calculation is done according to 

simplified dynamics given in (24). 
 

     q
refref
dd
refref
qq d

u v

vu

ω

ωφ

φ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (24) 

 
The results given in the following figures show degraded 

efficiency of vector control, as expected. In the following 
figures, the results of nonlinear control are blue colored 
solid line while the vector control results are in red colored 

dot line. For the same dynamics the vector control (loaded 
starting) lasts twice as long (Fig. 20), has higher errors (Fig. 
21) and (because of a lesser degree of synchronism) has 
higher damper windings current oscillations in comparison 
with the novel control (Fig.(s) 22 and 23). Eliminating 
damper winding current oscillations by using the novel 
control law decreases electromagnetic torque ripple (Fig. 
24). The current waveforms (Fig. 25), show less harmonic 
distortion in the novel application. Because of the degraded 
efficiency, the vector control also needs higher DC voltage 
then the novel control. 
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Fig. 20. Rotor speed 

 

0 0.5 1 1.5 2 2.5
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Time (s)

ro
to

r s
pe

ed
 e

rr
or

 (p
 u

)

vector control
novel

 
Fig. 21. Rotor speed error 
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Fig. 22. D-axis damper winding current 
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Fig. 23. Q-axis damper winding current 
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Fig. 24. Electromagnetic torque 
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Fig. 25. Stator winding currents 
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7. Comparison Between Conventional Nonlinear 
and Novel Control 

 
The vector control principle has been used to form 

conventional nonlinear control. The normally used vector 
control principle is to set id to zero and to control torque 
with iq component. It is according to this principle that 
backstepping and feedback linearization control laws have 
been designed. 

To make a proper comparison, the novel control has 
been simulated together with each of the other controls in 
the same Simulink model, under the same conditions. The 
starting process with load torque step up at 1,3 seconds and 
step down at 1,8 seconds has been simulated. The results of 
the novel control are shown in blue colored solid line while 
all others are in red colored dot line. 

 
7.1 Backstepping design 

 
Again, the system given in (1) has been used and damper 

winding has been taken into consideration. 
The first step is to define ud according to the d-current 

zero reference. Error convergence can be easily achieved 
and the equation is given in (25). 

 

 d f q d1 2 3 4 5 6 f dD Q

7

 
 

 

a a a a a a u ei i i k
adu

ω ωφ φ⎛ ⎞− − − − − − −⎜ ⎟
⎝ ⎠=  (25) 

 
where kd is convergence constant and ed is d-current error  

 
ed = id- idref. 

 
To find the control law for iq current, a new variable can 

be defined as (26): 
 

(26)                            
4321 ϕϕα Qdqq igigiigiig dqfd +++=  

 
The differential of rotor speed error (eω ) can be written 

as (27): 
 

 e k e eω ω ω α−= +  (27) 
 

where kω is convergence constant; eα is the difference 
between α and its desired value α* and eω is the difference 
between ω and its refference ωref .  

In the case that desired value of α is α* (28);  
 

 *
5 L refg T k eωωωα +=− −   (28) 

 
the differential of rotor speed error (eω) would be:  

 
     k ee ω ωω

•

= −  (29) 
 

and it would be convergent. 

According to this analysis Lyapunov fuction can be 
defined as (30): 

 
(30)                                    

2
1

2
1 222 eekV αωωω +=  

 
uq can be obtained regarding Lyapunov function differential 
(31): 

 

 23ekV ωωω

•

=−
2

 k eω α−  (31) 

 
and is given in (32). 
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The simulation results for the rotor speed and 

electromagnetic torque are given below: rotor speed (Fig. 
26), its error (Fig. 27) and electromagnetic torque (Fig. 28).  
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Fig. 26. Rotor speed 
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Fig. 27. Rotor speed error 
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Due to torque and flux decoupling in the novel control 
law, a better use of DC voltage and consequently better 
performance is achieved. During the starting process, in 
backstepping control also the high torque ripple appears.  

 
7.2 Feedback linearization without torque and flux 

decoupling 
 
The vector control principle given in backstepping 

design has been used again to test the performance of the 
feedback linearization without torque and flux decoupling 
control law. The control law for this can be derived 
similarly to the already given control law (17).  

Simulations have been done with and without taking into 
consideration the damper winding effect. The results given in Fig. 29 and Fig. 30 are for the case 

of damper winding not considered. They show, once again, 
the same advantages of the novel control as described 
before. 

The feedback linearization with damper winding effect 
taken into consideration is also given. The advantage of 
decoupling is once again obvious (Fig. 31) and by taking 
into consideration the damper winding, the electromagnetic 
torque ripple will be reduced during the starting process as 
given in Fig. 32. 

 
 

8. Conclusion 
 
This paper presents simulation studies of synchronous 

machine observer-based control. The presented novel control 
is based on the electromagnetic torque and magnetic flux 
decoupling principle. To accomplish full decoupling, an 
observer for the unknown SM states has been used. Full 
and reduced order observers are also presented. 

The method has been checked with the speed reversing 
tracking system. Comparison of the novel nonlinear control 
with linear control and also with conventional nonlinear 
control has been given.  

Simulation results show that precise control has been 
achieved. It is shown that decoupling enables much better 
use of DC voltage, while the use of damper winding 
observer reduces torque ripple. These two contributions 
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Fig. 29. Rotor speed 
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Fig. 30. Electromagnetic torque 
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Fig. 31. Rotor speed 
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Fig. 32. Electromagnetic torque 
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Fig. 28. Electromagnetic torque 
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incorporated together into the control system enhance 
performance and operational range of SM drives.  

The control system is discretized and thus the sample 
data system has been defined. From Simulink blocks, the 
control system is easily convertible to C-code and is being 
prepared for DSP implementation. 

The method can also be used for torque control, in both 
motor and generator operation regimes, and can be applied 
to any kind of synchronous machine including permanent 
magnet synchronous machines.  

 
 

Synchronous Machine Parameter and State Symbols 
 
Lmd  – d-axis mutual inductance 
Ld   – stator d-axis inductance  
Lσ  – stator leakage iductance 
LD  – damper d-axis inductance 
LσD  – damper d-axis leakage inductance 
Lf   – field inductance 
Lσf  – field leakage inductance 
Lmq  – q-axis mutual inductance 
Lq  – stator q-axis inductance 
LQ  – damper q-axis inductance 
LσQ  – damper q-axis leakage inductance 
rs   – stator resistance 
rf   – field resistance 
rD   – damper d-axis resistance 
rQ   – damper q-axis resistance 
H – inertia constant 
id   – stator d-axis current 
if   – field current 
iq   – stator q-axis current 
φD  – damper d-axis flux 
φQ   – damper q-axis flux 
φd   – stator d-axis flux 
φq   – stator q-axis flux 
ω   – rotor speed 
TL   – load torque 
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