• Title/Summary/Keyword: Track Settlement

Search Result 139, Processing Time 0.028 seconds

The Characteristic of Track Settlement : State of the Arts (궤도침하 특성 : State of the Arts)

  • Jang, Sun-Jae;Lim, Nam-Hyoung;Choi, Jin-Yu;Lee, Woo-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1672-1675
    • /
    • 2008
  • The track is an important component of rail structures. The characteristic of the track settlement must be confirmed in order to evaluate the stability of the track. It is effected by action load and the characteristic of the track material. This study investigates the mechanism of the track settlement and the effect of initial settlement and long-term settlement on the characteristic of the track settlement through literature survey. It tries to observe the future research direction of track settlement.

  • PDF

A study on the Settlement of Ballasted Track according to Various Rail-Pad Stiffness (레일패드의 강성이 자갈궤도 침하에 미치는 영향 연구)

  • Choi, Jin-Yu;Kim, Eun;Hwang, Man-Ho;Choi, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.249-255
    • /
    • 2010
  • Ballasted track is under the circumstance of repetition of deterioration and recovery. Track deterioration is presented as track irregularity or settlement, and dynamic force subjected to track is one of major cause of the deterioration. The dynamic force is determined from the dynamic interaction between track and vehicle. Rail-pad stiffness is one of the factor affects track dynamic property. In this study, the relationship between rail-pad stiffness and track settlement was investigated. Dynamic forces according to various rail-pad stiffness was obtained from the dynamic vehicle-track interaction analysis using DARTS-NL. Track settlement was calculated by substitution the dynamic forces into various formulas for track settlement. From the result of analysis, it was known that the track settlement is increased about 6% when the rail-pad stiffness rise about twice. And this result leads that there is only a little relationship between rail-pad stiffness and track settlement.

  • PDF

Settlement of Embankment and Foundation for Concrete Track of Gyungbu High Speed Railroad (경부고속철도 콘크리트궤도 토공 및 원지반 침하 (I))

  • Yang, Shin-Chu;Moon, Jae-Suk;Lee, Hyun-Jung;Kang, Dae-Woong;Kim, Dae-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.644-651
    • /
    • 2006
  • An application of concrete track is being actively processed for the construction of Korean railroad. The concrete track has an advantage to decrease the maintenance ire, but is very difficult system to maintain after earthwork settlement occurred. Therefore, the management and control of embankment and foundation settlement is very important for the successful concrete track construction. We expect that the main part of the settlement of the concrete track is the one of embankment and foundation supporting it. Settlements vulnerable to the concrete track among the causes of lots of settlements are primary consolidation and secondary compression settlement of foundation, creep settlement of embankment, settlement caused by train load, and unequal settlement resulting from the difference of embankment material and construction process. This paper investigated the settlement causes to make badly effects on the concrete track and also evaluated the settlement with field tests and numerical analysis.

Effect of lateral differential settlement of high-speed railway subgrade on dynamic response of vehicle-track coupling systems

  • Zhang, Keping;Zhang, Xiaohui;Zhou, Shunhua
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.491-501
    • /
    • 2021
  • A difference in subgrade settlement between two rails of a track manifests as lateral differential subgrade settlement. This settlement causes unsteadiness in the motion of trains passing through the corresponding area. To illustrate the effect of lateral differential subgrade settlement on the dynamic response of a vehicle-track coupling system, a three-dimensional vehicle-track-subgrade coupling model was formulated by combining the vehicle-track dynamics theory and the finite element method. The wheel/rail force, car body acceleration, and derailment factor are chosen as evaluation indices of the system dynamic response. The effects of the amplitude and wavelength of lateral differential subgrade settlement as well as the driving speed of the vehicle are analyzed. The study reveals the following: The dynamic responses of the vehicle-track system generally increase linearly with the driving speed when the train passes through a lateral subgrade settlement area. The wheel/rail force acting on a rail with a large settlement exceeds that on a rail with a small settlement. The dynamic responses of the vehicle-track system increase with the amplitude of the lateral differential subgrade settlement. For a 250-km/h train speed, the proposed maximum amplitude for a lateral differential settlement with a wavelength of 20 m is 10 mm. The dynamic responses of the vehicle-track system decrease with an increase in the wavelength of the lateral differential subgrade settlement. To achieve a good operation quality of a train at a 250-km/h driving speed, the wavelength of a lateral differential subgrade settlement with an amplitude of 20 mm should not be less than 15 m. Monitoring lateral differential settlements should be given more emphasis in routine high-speed railway maintenance and repairs.

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

Analysis of Allowable Settlement on Tracks of High Speed Railway (고속철도 궤도 종류에 따른 허용침하량 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom;Seol, Hoon-Il;Han, Young-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.25-34
    • /
    • 2008
  • An application of concrete track is being actively processed for the construction of Korean high speed railway. The concrete track has an advantage in decreasing the maintenance cost, whereas it has much difficulty controlling the long term settlement after settlement occurred. Therefore, the management and control of settlement are very important for the successful construction of concrete track. The purpose of this paper is to verify the allowable settlement between concrete track and ballast track, and piled raft foundation installation effects as settlement reducers for concrete track. Therefore, a series of 3D finite element analyses that take into account the allowable settlement were performed for major parameters such as soil condition, pile installation and loading type. Based on the analysis, it is shown that concrete track causes much smaller settlement than ballast track, and the effect of installation is necessary to effectively reduce the settlement of concrete track.

Analysis of Residual Settlement of Concrete Track Roadbed for High-Speed Railway (고속철도 콘크리트궤도 토공노반의 잔류침하 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Kwon, Oh-Jung;Jeong, Uhn-Ghi
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.369-374
    • /
    • 2007
  • An active application of concrete track is being expected for the future construction of Korean railroad. For the successful concrete track construction and design in earthwork areas, the residual settlement should be reasonably estimated using the proper method. The concrete track is extremely vulnerable to the damage of residual settlement. However, at the transition areas such as bridge approach, differential settlement will likely occur due to difference of stiffness, poor drainage and poor ground treatment. The maintenance is very difficult for excessive settlement on existing line, it is need to constrain the residual settlement in step of design. In this paper, it is performed the analysis of the residual settlement measured data, test results and reference to understand the residual settlement behavior of concrete track roadbed

  • PDF

Study of Determination of Allowable Residual Settlement of Concrete Track Roadbed for High-Speed Railway (콘크리트궤도 토공노반의 허용잔류침하량 결정에 관한 연구)

  • Lee, Il-Wha;Yang, Shin-Chu;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1121-1125
    • /
    • 2007
  • An active application of concrete track is being expected for the future construction of Korean railroad. For the successful concrete track construction and design in earthwork areas, the residual settlement should be reasonably estimated using the proper method. The concrete track is extremely vulnerable to the damage of residual settlement. However, at the transition areas such as bridge approach, differential settlement will likely occur due to difference of stiffness, poor drainage and poor ground treatment. The maintenance is very difficult for excessive settlement on existing line, it is need to constrain the residual settlement in step of design. In this paper, it is performed the determination of the allowable residual settlement through various study to understand the residual settlement behavior of concrete track roadbed.

  • PDF

Effect of Settlement Restoration Grouting between concrete track/Roadbed on the train service stability (콘크리트궤도 침하복원을 위한 궤도/노반 인터페이스부 그라우팅이 주행안정성에 미치는 영향)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Tae-Guen;Kang, Tae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.796-804
    • /
    • 2008
  • Various design factors should be considered in order to apply the concrete slab track system on the soil/rock roadbed. One of the important factors is the settlement of roadbed. This settlement of concrete track should be supervised under the allowable settlement limit. If the settlement of roadbed under the concrete track exceed the allowable limit, the train serviceability will considerably come down and furthermore the fatal disaster may happen. Therefore, in this paper we introduced a digitalized grouting method as a settlement restoration method that can be suitably adopted to the concrete slab track. And we also evaluated the train service stability through the analysis of the track behavior according to the difference of the stiffness between the grouted part and the original roadbed.

  • PDF

A Study on the Criteria of Settlement in Concrete Slabtrack (토노반상 콘크리트궤도의 노반허용침하기준설정에 관한 연구)

  • Hong, Chul-Kee;Yang, Shin-Chu;Kim, Yun-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.355-364
    • /
    • 2007
  • Recently a concrete slab tracks are being constructed on roadbed in the Gyoeng-bu 2nd phase high speed railways. In respdnding to this trend, new design standards and track materials maintenance systems, based on the slab track material safety and usage perspective, are needed. This research provides a roadbed design criteria and the maintenance system. The proposed roadbed design criteria and the maintenance system are based on the developed analysis meathod of train/slab-track interaction. where the roadbed settlement and train speed are utilized as mediating variables. In the analysis, the dynamic response of train/slab-track interaction apply to various speeds and settlements. the roadbed settlement is shown in a sinusoidal shape of wave, the scope of the settlement occurrence presented in its wavelengths, include 6meters, 10meters, 15merwes, 20meters, 30meters. The train speeds involved are 50, 100, 150, 200, 250, 300, 350, 400kilometers per hour.