The Journal of Asian Finance, Economics and Business
/
제8권1호
/
pp.207-215
/
2021
The number of tourists visiting Nepal has shown rapid growth in recent years, and Nepal is expecting more tourist arrivals in the future. This paper, thus, attempts to analyze the tourist arrivals in Nepal and predict the number of visitors until 2025. This paper has examined the international tourist arrival trend in Nepal using the Gompertz and Logistic growth model. The international tourist arrival data from 1991 to 2018 is used to investigate international tourist arrival trends. The result of the analysis found that the Gompertz model performs a better fit than the Logistic model. The study further forecast the expected tourist arrival below one million (844,319) by 2025. Nevertheless, the government of Nepal has the goal of two million tourists in a year. The present study also discusses system dynamics scenarios for the two million potential visitors within a year. Scenario analysis shows that proper advertisement and positive word-of-mouth will be key factors in achieving a higher number of tourists. The current study could fill the gap of theoretical and empirical forecasting of tourist arrivals in the Nepalese tourism industry. Also, the study findings would be beneficial for government officers, planners and investors, and policy-makers in the Nepalese tourism industry.
Purpose - The purpose of this study is to examine the gravity model commonly used for demand forecasting upon the implementation of new tourist facilities and analyze the main causation of forecasting errors to provide a suggestion on how to improve. Design/methodology/approach - This study first measured the errors in predicted values derived from past feasibility study reports by examining the cases of five national science museums. Next, to improve the predictive accuracy of the gravity model, the study identified the five most likely issues contributing to errors, applied modified values, and recalculated. The potential for improvement was then evaluated through a comparison of forecasting errors. Findings - First, among the five science museums with very similar characteristics, there was no clear indication of a decrease in the number of visitors to existing facilities due to the introduction of new facilities. Second, representing the attractiveness of tourist facilities using the facility size ratio can lead to significant prediction errors. Third, the impact of distance on demand can vary depending on the characteristics of the facility and the conditions of the area where the facility is located. Fourth, if the distance value is below 1, it is necessary to limit the range of that value to avoid having an excessively small value. Fifth, depending on the type of population data used, prediction results may vary, so it is necessary to use population data suitable for each latent market instead of simply using overall population data. Finally, if a clear trend is anticipated in a certain type of tourist behavior, incorporating this trend into the predicted values could help reduce prediction errors. Research implications or Originality - This study identified the key factors causing prediction errors by using national science museums as cases and proposed directions for improvement. Additionally, suggestions were made to apply the model more flexibly to enhance predictive accuracy. Since reducing prediction errors contributes to increased reliability of analytical results, the findings of this study are expected to contribute to policy decisions handled with more accurate information when running feasibility analyses.
The study uses a seasonal ARIMA model to forecast the number of tourists of Yeongdeok in an uni-variable time series. The monthly data for time series were collected ranging from 2006 to 2011 with some variation between on-season and off-season tourists in Yeongdeok county. A total of 72 observations were used for data analysis. The forecast multiplicative seasonal ARIMA(1,0,0)$(0,1,1)_{12}$ model was found the most appropriate one. Results showed that the number of tourists was 10,974 thousands in 2012 and 13,465 thousands in 2013, It was suggested that the grasping forecast model is very important in respect of how experts in tourism development in Yeongdeok county, policy makers or planners would establish strategies to allocate service in Yeongdeok tourist destination and provide tourism facilities efficiently.
외래 관광객 수요를 분석하고 예측하는 것은 관광 정책을 수립하고 기획하는데 지대한 영향을 미치기 때문에 관광 산업 분야에서 매우 중요하다. 외래 관광객 데이터는 여러 외적 요인들에 의해 영향을 받기 때문에, 시간에 따른 미세한 변화가 많다는 특징을 갖는다. 따라서, 최근에는 관광객 입국자 수요를 예측하기 위해 경제 변수 등 여러 외적 요인들도 함께 반영하여 예측 모델을 설계하는 연구를 진행하고 있다. 그러나 기존의 시계열 예측에 주로 사용되는 회귀분석 모델과 순환신경망 모델은 여러 변수들을 반영하는 시계열 예측에 있어 좋은 성능을 보이지 못했다. 따라서 우리는 합성곱 신경망을 활용하여 이러한 한계점들을 보완한 외래 관광객 수요 예측 모델을 소개한다. 본 논문에서는 한국관광공사에서 제공한 과거 10개년 외래 관광객 데이터와 추가적으로 수집한 여러 외적 요인들을 입력 변수로 반영하는 1차원 합성곱 신경망을 설계하여 외래 관광객 수요를 예측하는 모델을 제시한다.
As the volatility increasement of the number of tourist, there was been controversy over supply-demand imbalance in hotel market. The purpose of this study is to analysis on determinants of hotel occupancy rate in Jeju Island. The quantitative method is based on cointegrating regression, using an empirical dataset with hotel from 2000 to 2017. The primary results of research is briefly summarized as follows; First, there are high relationship between total hotel occupancy rate and hotel occupancy of foreign tourist. The volatility of hotel occupancy is caused by foreigner user than local tourists though local tourist high propotion of hotel occupancy in Jeju Island. Second, hotel occupancy of local tourist has not relationship with demand and supply variables. Because some hotel users are not local tourists but local resident, and effects to other variables of hotel consumer trend, accommodation such as Guest house, Airbnb. Third, there are high relationship between foreign hotel occupancy rate and demand-supply variables. These research imply that total management of supply-demand is very important to seek stability of hotel occupancy rate in Jeju Island. Also it can provide a useful solution regarding mismatch problem between supply-demand as well as development the systematic forecasting model for hotel market participants.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.117-122
/
2022
One of the promising sectors of the economy today is tourism in all forms and types. The multiplier effect of tourism is huge: the income received from one tourist exceeds the amount of money spent by him at the location on the purchase of services and goods in the range from 1.5 to 4 times. Countries known as world centers of tourism have made it a state policy, taking on the functions of forecasting, coordinating and controlling. The architectural monuments of the city historical structure are a pretty resource for tourism. Cultural tourism as a type of sociocultural human activity is one of the popular and mass types of tourism. The number of people wishing to get acquainted with historical and cultural sights is growing every year. In the cultural aspect, tourism has an impact on the spiritual and material spheres of human life, his way of life, value system, social behavior.Thus, the main task of the study is to analyze the features of the architecture of tourism and tourist complexes. As a result of the study, current trends and prerequisites for the architecture of tourism and tourist complexes were investigated.
Purpose Recently, there has been an increase in attempts to analyze social phenomena, consumption trends, and consumption behavior through a vast amount of customer data such as web search traffic information and social buzz information in various fields such as flu prediction and real estate price prediction. Internet portal service providers such as google and naver are disclosing web search traffic information of online users as services such as google trends and naver trends. Academic and industry are paying attention to research on information search behavior and utilization of online users based on the web search traffic information. Although there are many studies predicting social phenomena, consumption trends, political polls, etc. based on web search traffic information, it is hard to find the research to explain and predict tourism demand and establish tourism policy using it. In this study, we try to use web search traffic information to explain the tourism demand for major cities in Gangwon-do, the representative tourist area in Korea, and to develop a nowcasting model for the demand. Design/methodology/approach In the first step, the literature review on travel demand and web search traffic was conducted in parallel in two directions. In the second stage, we conducted a qualitative research to confirm the information retrieval behavior of the traveler. In the next step, we extracted the representative tourist cities of Gangwon-do and confirmed which keywords were used for the search. In the fourth step, we collected tourist demand data to be used as a dependent variable and collected web search traffic information of each keyword to be used as an independent variable. In the fifth step, we set up a time series benchmark model, and added the web search traffic information to this model to confirm whether the prediction model improved. In the last stage, we analyze the prediction models that are finally selected as optimal and confirm whether the influence of the keywords on the prediction of travel demand. Findings This study has developed a tourism demand forecasting model of Gangwon-do, a representative tourist destination in Korea, by expanding and applying web search traffic information to tourism demand forecasting. We compared the existing time series model with the benchmarking model and confirmed the superiority of the proposed model. In addition, this study also confirms that web search traffic information has a positive correlation with travel demand and precedes it by one or two months, thereby asserting its suitability as a prediction model. Furthermore, by deriving search keywords that have a significant effect on tourism demand forecast for each city, representative characteristics of each region can be selected.
본 연구는 중앙선의 여객수송수요를 효율적으로 예측하기 위한 방법으로 계절성 요인을 고려한 ARIMA 모형을 제안하였다. 특히, 최근의 관광수요를 반영하기 위하여 2013년 4월 개통되어 운행되고 있는 중부내륙권 관광전용열차(O-train, V-train)의 수요를 포함하여 예측모형을 구축하였다. 이를 위하여 2005년 1월부터 2013년 7월까지의 월별 시계열 데이터(103개)를 사용하여 최적의 모형을 선정하였으며 예측결과 중앙선의 여객 수송수요는 지속적으로 증가할 것으로 나타났다. 구축된 모형은 중앙선의 단기수요를 예측하는데 활용이 가능하다.
본 연구에서는 ARIMA(Autoregressive Integrated Moving Average) 모델을 이용하여 농촌관광마을의 월별 관광객을 추정하였다. 단일 마을에 대한 시계열 자료를 경상북도 안동시에 위치한 하회마을을 대상으로 구축하였다. 월별 시계열 자료는 2000년부터 2010년까지 구성되었는데(2008년도 누락), 2000년에서 2007년까지 자료는 최적 모델의 도출에 나머지는 예측치의 검정에 사용되었다. 연구 결과 최적모델에 필요한 시계열 자료의 길이는 6년으로 나타났으며, 최적모델은 계절성을 고려한 SARIMA(2,1,1)(1,1,2)12로 나타났다. 최적 시계열 년수로 나타난 6년을 사용하여 2000-2005, 2001-2006, 그리고 2002-2007의 자료로부터 각각 SARIMA(2,1,1)(1,1,2)12를 도출하여, 차기년도들에 대한 예측결과를 비교한 결과, 높은 $R^2$값을 보였다.
Mungyeng line(Jupyung${\sim}$Mungyeng) was closed due to a rapid decrease in demand in 1995. However, as the rail transportation demand is expected to increase with the plan to develop a tourist resort and a traffic network in Mungyeng area, it is required to forecast future demand to meet the change of transportation environment in this region. This study predicts the rail transportation demand and analyzes financial benefit in operator's side in case of reopening this line, based on nation-wide traffic volume data from Korean Transportation Database(KTDB). The results of this research can be applied to not only establishing a train operation plan also improving customer service. Moreover, Korail will have an opportunity to develop new business by linking train service to tourist attractions around the Mungyeng area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.