• 제목/요약/키워드: Total heat release

Search Result 142, Processing Time 0.024 seconds

Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding (습식분쇄에 의한 입자크기 변화에 따른 분쇄입자의 종횡비 거동)

  • Choi, Jin Sam
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.223-230
    • /
    • 2020
  • As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 ㎛ are shifted to submicron size, D50 ~0.6 ㎛ after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction (X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석)

  • Choi, Jinsam;Park, Kyu Yeol;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.264-270
    • /
    • 2019
  • As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Combustion Characteristics of Useful Imported Woods (국내 유용 해외 목재 수종의 연소특성 평가)

  • Seo, Hyun Jeong;Kang, Mee Ran;Park, Jung-Eun;Son, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.19-29
    • /
    • 2016
  • The purpose of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of imported wood. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test according to KS F ISO 5660-1 and thermogravimetric analysis (TGA). Analyzed species are five kinds of species as Merbau, Mempening, Garo Garo, Malas, and Dillenia. The heat released rate values showed the highest value of Malas as $375.52kW/m^2$, and Dillenia showed the lowest value as $133.30kW/m^2$. The data values were confirmed in the following order: Malas > Mempening > Garo Garo > Merbau > Dillenia. In case of the total heat release, it was measured in the following order: Mempening > Malas > Garo Garo > Merbau > Dillenia. The gas analysis results were that Dillenia showed the highest value of 0.034. Also, Mempening and Malas showed the lowest at 0.020 in the $CO/CO_2$. Min of mass reduction was shown as 74.79% Sargent cherry, on the other hand, Malas had a 83.52%. It showed a correlation between and of the CO and $CO_2$ generation and combustion characteristics of wood. The thermal decomposition temperature of the wood in the TGA were as follow that Merbau $348.07^{\circ}C$, Mempening $367.57^{\circ}C$, Garo Garo $350.59^{\circ}C$, Malas $352.41^{\circ}C$, Dillenia $364.33^{\circ}C$. The aim of this study is to determine the combustion properties of imported wood according to ISO 5660-1. And, based on the results of this study, we would proceed with further research for improving the fire safety of wood for construction.

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II) (부실식 정적연소실내 층상혼합기의 연소특성(II))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

Evaluation of Combustion Characteristics of Outdoor Advertisement Materials (옥외 광고물 소재의 연소특성 평가)

  • Eom, Sang-Yong;Kim, Kyoung-Jin;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.79-84
    • /
    • 2012
  • Combustion characteristics of outdoor advertisement materials were evaluated for fire risk assessment about fire expanding. At this study, the flame retardancy and the limiting oxygen index (LOI) was measured by UL 94 and ASTM D 2863 respectively. At the result of flame retardancy, foamex was V-0 grade and those of others were out of grade. LOI measurement showed that the LOI of foamex was highest in the samples. The cone calorimeter test was done by ISO 5660-1 to find the combustion characteristics. The cone calorimeter test showed that the outdoor advertisement materials were not good to prevent of fire expanding. The time to ignition (TTI) of flex was the fastest and the peak heat release rate (PHRR) as well as the total heat release (THR) of acrylic panel was higher than those of others.

Flame Resistance Performance of Architectural Membrane According to Woven Fabrics and Coating Materials (직포 및 코팅재 타입에 따른 건축용 막재의 난연성능)

  • Kim, Ji Hyeon;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.545-551
    • /
    • 2016
  • Membrane structures which can be used large spatial structure are being expanded because of various advantages. However, despite the diverse membrane structure buildings and materials, the standard for membrane material performance that considering fire safety is still inadequate. Therefore, this study applied basalt or glass woven fabric with flame resistance on architectural membrane, and report the fire safety for architectural membrane using the strength properties, flammability and incombustibility. From the test result, the architectural membrane using basalt or glass woven fabric showed a low heat release rate and total heat release. Therefore, it was confirmed that the fire safety is relatively high.

Evaluation of the Prediction of B-RISK-FDS-Coupled Simulations for Multi-Combustible Fire Behavior in a Compartment (구획실 내 가연물들의 화재거동에 대한 B-RISK와 FDS 연계 화재 시뮬레이션 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.50-58
    • /
    • 2019
  • The prediction performance of B-RISK was evaluated for the fire behaviors of combustibles in a compartment using Fire Dynamics Simulator (FDS). First of all, to predict the heat release rate (HRR) for two combustible sets, the HRR for one combustible set and the design fire curve were used as input values for B-RISK. Comparing results of B-RISK calculations with experimental data for two combustible sets, it was found that B-RISK results predicted insufficiently for fire growth rate of experimental data but there was good agreement for maximum HRR and total HRR with the experimental data. And the B-RISK results were used for input values of FDS to evaluate the fire behaviors of B-RISK results. Comparing results of FDS calculations with experimental data, the simulation results showed that the temperature and concentrations of O2, CO2 in the fire growth phase were different from the experimental data. However, when using the B-RISK result for percentile 70%, the simulation results sufficiently predicted the overall fire behaviors.

Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex (복합영상관 단일 가연물의 디자인 화재곡선 평가)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong;Oh, Chang Bo;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.18-27
    • /
    • 2020
  • An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).

Heat Risk Assessment of Wood Coated with Silicone Compounds (실리콘 화합물로 도포된 목재의 열위험성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.9-19
    • /
    • 2019
  • Experiments on the combustion characteristics of untreated wood specimens and those treated with four types of silicone compounds were carried out using a cone calorimeter according to the ISO 5660-1 standard. 3-Aminopropyltrimethoxysilane (APTMS), 3-(2-aminoethylamino) propylmethyldimethoxysilane (AEAPMDMS), and 3-(2-aminoethylamino) propyltrimethoxysilane (AEAPTMS) were used as the silane compounds. The flame retardants were synthesized with sodium silicate and amino silane compounds. The measured time to ignition after combustion at an external heat flux of $50kW/m^2$ was 9 s to 11 s. Time to ignition was marked with a delayed value in the 3 s to 5 s range. The peak heat release rate ($HRR_{peak}$) was reduced by 5 to 20% compared with the uncoated specimen, and AEAPMDMS showed the highest initial fire risk. The total heat release (THR) was decreased by 1 to 22%. Compared to the untreated specimen, the fire performance index (FPI) of the specimens coated with silicone sol compounds increased by 1.5 to 2.2 fold. The fire growth index (FGI) of the AEAPMDMS specimen was increased by 30% and the others were decreased by 93 to 94%. Therefore, the fire risk of wood coated with silicone compounds was improved in terms of the heat risk properties.

A Study on the Combustion Characteristics of Useful Imported Wood for Building Materials - Focusing on the North American species (Douglas-fir, Western Red cedar) and African species(Makore, Padauk, Bubinga) - (국내 유용 건축자재용 수입 목재의 연소특성에 관한 연구 - 북미 산재(Douglas-fir, Western Red cedar)와 아프리카 산재 (Makore, Padauk, Bubinga)를 중심으로 -)

  • Seo, Hyun Jeong;Baek, Jong Kyo;Lee, Min Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.8-14
    • /
    • 2017
  • This study examined the combustion and thermal characteristics of imported woods for building materials in Korea. Wooden specimens were confirmed by a cone calorimeter according to the KS F ISO 5660-1 standard. The combustion properties of the wooden specimens were measured in terms of the heat release rate (HRR), total heat released (THR), mass lose rate (MLR), and ignition time (time to ignition; TTI). The optical microscope was used for determine the anatomical characteristics of wood pit and structure. Also, the thermal properties were measured by thermogravimetric analysis (TGA) to determine the thermal stability of wooden specimens. The result of this experiment would be useful for fundamentals of guiding the combustion properties and thermal stability using wood application.