Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.5.223

Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding  

Choi, Jin Sam (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.30, no.5, 2020 , pp. 223-230 More about this Journal
Abstract
As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 ㎛ are shifted to submicron size, D50 ~0.6 ㎛ after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
Keywords
primary particle; 0.3 mm media; shear friction; submicron; aspect ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Fuji, Hyomen Kagaku(in Japanese), 24, 625 (2003).   DOI
2 A. Heim, T. P. Olejik, A. Pawlak, Physicochemical Problems Miner. Process., 39, 189 (2005).
3 I. J. Lim and P. Somasundaran, Powder Technol., 6, 171 (1972).   DOI
4 P. H. Wiersema, A. L. Loeb and J. T. G. Overbeek, J. Colloid Interface Sci., 22, 78 (1966).   DOI
5 P. C. Kapur and D. W. Fuerstenau, Int. J. Miner. Process., 20, 45 (1987).   DOI
6 C. Suryanarayana, Procedia Mater. Sci., 46, 1 (2001).   DOI
7 V. Deniz and T. Onur, Int. J. Miner. Process., 67, 71 (2002).   DOI
8 J. Dittmann, E. Koos and N. Willenbacher, J. Am. Ceram. Soc., 96, 391 (2013).   DOI
9 A. Chaudhari, Z. Y. Soh, H. Wang and A. S. Kumar, Int. J. Mach. Tool. Manufact., 133, 47 (2018).   DOI
10 C. Suyanarayana, Prog. Mater. Sci., 46, 1 (2001).   DOI
11 J. S. Choi, Kr Patent, KR100928044B1 (2009).
12 J. S. Choi, D. Y. Jeong, D. W. Shin and W. T. Bae, J. Korean Ceram. Soc., 50, 238 (2013).   DOI
13 S. Nomura and T. Tanaka, Powder Technol., 58, 117 (1989).   DOI
14 D. Eskin and S. Voropayev, Min. Eng., 14, 1161 (2001).   DOI
15 S. G. Malghan, D. B. Minor and L. S. H. Lum, Powder Technol., 67, 201 (1991).   DOI
16 A. Jankovic, W. Valery, and E. Davis, Min. Eng., 17, 1075(2004).   DOI
17 J. B. Rao, G. J. Catherin, I. N. Murthy, D. V. Rao and B. N. Raju, Int. J. Eng. Sci. Technol., 3, 82 (2011).
18 L. G. Austin, K. Shoji and P. T. Luckie, Powder Technol., 14, 71 (1976).   DOI
19 J. K. Lee, Mechanical Grinding of Inorganic Raw Materials (in Korean), p.361, Bando Press, Seoul (1990).
20 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media., p.368, Pergamon, Oxford, England (1960).
21 K. Yildirim and L. G. Austin, Wear, 218, 15 (1998).   DOI
22 H. L. Lee, C. J. Jung, K. C. Park, Unit Operation (in Korean), p. 162, Bando Press, Seoul (1983).
23 C. Frances and C. Laguerie, Powder Technol., 99, 147 (1998).   DOI
24 L. Takacs and J. S. McHenry, Mater. Sci., 41, 5246 (2006).   DOI
25 J. A. Herbst and D. W. Fuerstenau, Trans. AIME Met. Pet. Eng., 252, 169 (1972).
26 P. W. Cleary, Int. J. Miner. Process, 63, 79 (2001).   DOI
27 L. A. Vermeulen, Powder Technol., 46, 281 (1986).   DOI
28 H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Sym. Int. Sci. Eng., 21, 2333 (1990).
29 M. Hosokawa, Nanoparticle Technology Handbook, ed. K. Nogi, M. Naito and T. Yokoyama, p.8, Elsevier, Amsterdam, Netherlands (2007).