Browse > Article
http://dx.doi.org/10.5658/WOOD.2016.44.1.19

Combustion Characteristics of Useful Imported Woods  

Seo, Hyun Jeong (Department of Wood Processing, Korea Forest Research Institute)
Kang, Mee Ran (Department of Wood Processing, Korea Forest Research Institute)
Park, Jung-Eun (Department of Wood Processing, Korea Forest Research Institute)
Son, Dong Won (Department of Wood Processing, Korea Forest Research Institute)
Publication Information
Journal of the Korean Wood Science and Technology / v.44, no.1, 2016 , pp. 19-29 More about this Journal
Abstract
The purpose of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of imported wood. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test according to KS F ISO 5660-1 and thermogravimetric analysis (TGA). Analyzed species are five kinds of species as Merbau, Mempening, Garo Garo, Malas, and Dillenia. The heat released rate values showed the highest value of Malas as $375.52kW/m^2$, and Dillenia showed the lowest value as $133.30kW/m^2$. The data values were confirmed in the following order: Malas > Mempening > Garo Garo > Merbau > Dillenia. In case of the total heat release, it was measured in the following order: Mempening > Malas > Garo Garo > Merbau > Dillenia. The gas analysis results were that Dillenia showed the highest value of 0.034. Also, Mempening and Malas showed the lowest at 0.020 in the $CO/CO_2$. Min of mass reduction was shown as 74.79% Sargent cherry, on the other hand, Malas had a 83.52%. It showed a correlation between and of the CO and $CO_2$ generation and combustion characteristics of wood. The thermal decomposition temperature of the wood in the TGA were as follow that Merbau $348.07^{\circ}C$, Mempening $367.57^{\circ}C$, Garo Garo $350.59^{\circ}C$, Malas $352.41^{\circ}C$, Dillenia $364.33^{\circ}C$. The aim of this study is to determine the combustion properties of imported wood according to ISO 5660-1. And, based on the results of this study, we would proceed with further research for improving the fire safety of wood for construction.
Keywords
combustion properties; cone calorimeter; heat release rate; mass loss rate; thermal stability;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Byrne, C.E., Nagle, D.C. 1997. Carbonization of wood for advanced materials applications. Carbon 35(2): 259-266.   DOI
2 Chung, Y.J., Spearpoint, M. 2007. Combustion properties of native Korean wood species. International Journal on Engineering Performance- Based Fire Codes 9(3): 118-125.
3 Chung, Y.J. 2009. Comparison of combustion properties of the Pinus regida, Castanea sativa and Zelkoa serrata. Journal of Korean Institute of Fire Science and Engineering 23(4): 73-78.
4 Delichatsios, M., Paroz, B., Bhargava, A. 2003. Flammability properties for charring materials. Fire Safety Journal 38(3): pp. 219-228.   DOI
5 Eom, Y.G. 2007. Wood and engineered wood as the eco-friendly building materials. Air cleaning technology 20(2): 26-49.
6 Fu, Y., Lu, S., Li, K., Liu, C., Cheng, X., Zhang, H. 2015. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. Journal of Power Sources 273: 216-222.   DOI
7 Gao, M., Ling, B., Yang, S., Zhao, M. 2005. Flame retardance of wood treated with guanidine compouns characterized by thermal degradation behavior. Journal of Analytical and Applied Pyrolysis 73(1): 151-156.   DOI
8 Gratkowski, M.T., Dembsey, N.A., Beyler, C.L. 2006. Radiant smoldering ignition of plywood. Fire Safety Journal 41(6): 427-443.   DOI
9 Guillaume, E., Marquis, D., Saragoza, L. 2014. Calibration of flow rate in cone calorimeter tests. Fire and Materials 38: 194-203.   DOI
10 Kim, H.S., Kim, S., Kim, H.J., Yang, H.S. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibizing agent type and content. Thermochimica Acta 451(1-2): 181-188.   DOI
11 Kim, J., Lee, J.H., Kim, S. 2012. Estimating the fire behavior of wood flooring using a cone calorimeter. Journal of Thermal Analysis and Calorimetry 110: 677-683.   DOI
12 Kim, S.H. 2004. Wood species Information. Wood Korea.
13 KS F ISO 5660-1. 2003. Reaction to fire test - Heat release. smoke production and mass loss rate - Part 1: Heat release rate (Cone calorimeter method).
14 Lee, B.H., Kim, H.S., Kim, S., Kim, H.J., Lee, B.W., Deng, Y., Feng, Q., Luo, J. 2011. Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter. Construction and Materials 25(7): 3044-3050.   DOI
15 Li, B. 2003. Influence of polymer additives on thermal decomposition and smoke emission of poly (vinyl chloride). Polymer Degradation and Stability 82(3): 467-476.   DOI
16 Lowden, L.A., Hull, T.R. 2013. Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews 2(4): 1-19.   DOI
17 Randriamananantena, T., Razafindramisa, F.L., Ramanantsizehena, G., Bemes, A., Lacabane, C. 2009. Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere, Proceedings of the Fourth High-energy Physics International Conference, Agugust 21-28, Antananarivo, Madagascar.
18 Seo, H.J., Kim, S., Son, D.W., Park, S.B. 2013. Review on Enhancing Flame Retardant Performance of Building Materials using Carbon Nanomaterials. Journal of the society of living environmental system Korea 20(4): 514-526.
19 Seo, H.J., Kang, M.R., Son, D.W. 2015. Combustion Properties of Woods for Indoor Use (II). Journal of the Korean wood science and technology 43(4): 478-485.   DOI
20 Seo, H.J., Kim, S., Huh, W., Park, K.W., Lee, D.R., Son, Kim, Y.S. 2015. Enhancing the flameretardant performance of wood-based materials using carbon-based materials. Journal of Thermal Analysis and Calorimetry 119(3): 1-8.   DOI
21 Son, D.W., Kang, S. 2014. Combustion Properties of Woods for Indoor Use (I). Journal of the Korean Wood Science and Technology 42(6): 675-681.   DOI
22 Son, D.W., Kang, M.R. 2015. Combustion Characteristics of Fire Retardants Treated Wood (I). Journal of the Korean wood science and technology 43(1): 96-103.   DOI
23 Sjostrom., E. 1993. Wood chemistry. Fundamentals and Applications. Second edition ed. San Diego: Academic press.
24 The Information of National timber industry, KFS-2012 trends in May, Korea Forest Service (2012).
25 White, R.H., Dietenberger, M.A. 2010. Fire safety of wood construction. In: Wood handbook-Wood as an engineering material, Centennial Edition. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
26 White, R.H., Dietenberger, M.A. 2013. Fire safety of wood construction. General Technical Report FRL-GTR-190. Chapter 18.
27 Yang, H., Yan, R., Chen, H., Yang, H.S. 2006. Thermal properties of bio-flour-filed polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451(1-2): 181-188.   DOI
28 Yang, J., Roy, C. 1999. Using DTA to quantitatively determine enthalpy change over a wide temperature range by the "mass-difference baseline method". Thermochimica Acta 333(2-3): 131-140.   DOI