• 제목/요약/키워드: Total harmonics distortion

검색결과 148건 처리시간 0.019초

Harmonic Analysis of a Modular Multilevel Converter Using Double Fourier Series

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Ahn, Jin Hong;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.298-306
    • /
    • 2018
  • This paper presents a harmonic analysis of the modular multilevel converter (MMC) using a double Fourier series (DFS) algorithm. First, the application of DFS for harmonic calculation in the MMC is made by considering the effect of arm inductor. The analytical results are then confirmed by comparing with the simulation results of using the fast Fourier transform (FFT) algorithm. Finally, distribution of harmonics and total harmonic distortion (THD) in the MMC will be analyzed in three cases: harmonics versus number of levels of MMC, harmonics versus total switching frequency and harmonics versus modulation index. The simulation results are performed in the PSCAD/EMTDC simulation program in order to verify the analytical results obtained by Matlab programming.

모멘트 정합 방법(Moment Matching Method)을 이용한 전기철도 급전시스템의 고조파 평가 (Harmonics Assessment for an Electric Railroad Feeding System using Moments Matching Method)

  • 이준경;이승혁;김진오
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Generally, an electric railroad feeding system has many problems due to the different characteristics in contrast with a load of general three-phase AC electric power system. One of them is harmonics problem caused by the switching device existing in the feeding system, and moreover, the time-varying dynamic loads of rail way is inherently another cause to increase this harmonics problem. In Korea power systems, the electric railroad feeding system is directly supplied from the substation of KEPCO. Therefore, if voltages fluctuation or unbalanced voltages are created by the voltage and current distortion or voltage drop during operation, it affects directly the source of supply. The trainloads of electric railway system have non-periodic but iterative harmonic characteristics as operating condition, because the electric characteristic of the electric railroad feeding system is changed by physical conditions of the each trainload. According to the traditional study, the estimation of harmonics has been performed by deterministic way using the steady state data at the specific time. This method is easy to analyze harmonics, but it has limits in some cases which needs an assessment of dynamic load and reliability. Therefore, this paper proposes the probabilistic estimation method, moments matching method(MW) in order to overcome the drawback of deterministic method. In this paper, distributions for each harmonics are convolved to obtain the moments and cumulants of TDD(Total Demand Distortion), and this can be generalized for any number of trains. For the case study, the electric railway system of LAT(Intra Airport Transit) in Incheon International Airport is modeled using PSCAD/EMTDC dynamic simulator. The raw data of harmonics for the moments matching method is acquired from simulation of the LAT model.

유도전동기의 전기적 특성에 미치는 고조파 전류의 영향 (Infuences of Harmonic Current on Electrical Characteristics of an Induction Motor)

  • 박양범;김두현
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.67-72
    • /
    • 2005
  • This paper proposes the influences of harmonic current on electrical characteristics of an induction motor. Recently, a power system gets more worse as nonlinear load makes harmonics to affect energy lose of system and shorten lift of machines. In this paper, the electrical effect and THD(Total Harmonic Distortion) of harmonic current to an induction motor which is of great use in the industrial fields are measured and analyzed. A power conversion equipment(inverter) is installed to produce harmonics and variable reactors are installed to reduce the harmonics having an effect on the input terminal. Then the effects of the reactors are measured and analyzed. Also average voltage, current, power and 110 by harmonics are analyzed. The results show that Inn is increased by increasing load of the induction motor and installing reactors. And the harmonics affecting the input terminal are decreased by increasing reactor 3[mH] to 6[mH], however, average power of the induction motor is decreased. Therefore, it is very important that reactors should be carefully installed considering the merits and demerits resulting from the installation of reactors.

종합 고조파 왜율 일정 제어를 위한 삼상 NPC PWM 인버어터의 제어 기법 (The Control Technique of 3 Phase NPC PWM Inverter to control fixed Total Harmonic Distortion)

  • 송언빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.565-567
    • /
    • 1994
  • This paper presents a software based NPC PWM inverter control technique to eliminate the harmonics in the output waveforms of inverter. The proposed control technique is able to keep down total harmonic distortion and significantly improve the performance of the inverter. In the control node where the frequency ratio is 36 and the modulation index is $1.2\sim2.0$, the proposed inverter has been operated wi thin 5% Total Harmonic Distortion.

  • PDF

Design and Implementation of a Multi Level Three-Phase Inverter with Less Switches and Low Output Voltage Distortion

  • Ahmed, Mahrous E.;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.593-603
    • /
    • 2009
  • This paper proposes and describes the design and operational principles of a three-phase three-level nine switch voltage source inverter. The proposed topology consists of three bi-directional switches inserted between the source and the full-bridge power switches of the classical three-phase inverter. As a result, a three-level output voltage waveform and a significant suppression of load harmonics contents are obtained at the inverter output. The harmonics content of the proposed multilevel inverter can be reduced by half compared with two-level inverters. A Fourier analysis of the output waveform is performed and the design is optimized to obtain the minimum total harmonic distortion. The full-bridge power switches of the classical three-phase inverter operate at the line frequency of 50Hz, while the auxiliary circuit switches operate at twice the line frequency. To validate the proposed topology, both simulation and analysis have been performed. In addition, a prototype has been designed, implemented and tested. Selected simulation and experimental results have been provided.

단상 계통연계 인버터를 위한 새로운 고조파 보상법 (A Novel Harmonic Compensation Method for the Single Phase Grid Connected Inverters)

  • 칸 아마드 레이안;아쉬라프 모하마드 노만;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.144-146
    • /
    • 2018
  • In order to meet the harmonics standards such as IEEE 519 and P1547 the output quality of a grid connected inverter should satisfy a certain level of Total Harmonic Distortion (THD) value. However, the output quality of an inverter gets degraded due to the grid voltage harmonics, the dead time effects and the nonlinearity of the switches, which all contributes to a higher THD value of the output. In order to meet the required THD value for the inverter output under the distorted grid condition the use of harmonic controller is essential. In this paper a novel feedforward harmonic compensation method is proposed in order to effectively eliminate the low order harmonics in the inverter current to the grid. In the proposed method, unlike the conventional harmonic control methods, the hamonic components are directly compensated by the feedforward terms generated by the PR controller with the grid current in the stationary frame. The proposed method is simple in implementation but powerful in eliminating the harmonics from the output. The effectiveness of proposed method is verified through the PSIM simulation and the experiments with a 5kW single phase grid connected inverter.

  • PDF

LED 전광판용 SMPS의 고조파 특성에 관한 연구 (A Study on the Harmonic Characteristics of SMPS Load in LED Display Board)

  • 박준열;고만석;장래창;최홍규
    • 조명전기설비학회논문지
    • /
    • 제27권9호
    • /
    • pp.36-43
    • /
    • 2013
  • The prevalence of electronic devices in our modern life is accompanied with the generation of harmonics caused by the nonlinear characteristic load. Especially, the employment of LED have brought the rapid use of SMPS. SMPS is used for supplying the constant DC electric power to the LED display board, but it has a big problem which gives birth of harmonics causing by its high-speed switching. measurement HIOKI 3196 equipment to solve these harmonics were measured. In this study, we are LED Display Board Load Measuring the impedance response with $X_L$ changes for removing harmonics in the measured. And we adopted the suitable passive filter by the impedance response characteristic obtained in the $X_L$ variation experiments. We are trying to deeply the application of passive harmonic filter characteristics that generation in the LED Display Board through EDSA LED simulation.

단상 계통연계 인버터를 위한 개선된 고조파 보상법 (An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter)

  • 칸 레이안;최우진
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

전기설비의 고조파 진단을 위한 전력품질 측정시스템의 개발 (Development of Power Quality Measurement System for Harmonics Diagnosis of Electrical Equipment)

  • 유재근;이상익;전정채
    • 조명전기설비학회논문지
    • /
    • 제17권6호
    • /
    • pp.130-137
    • /
    • 2003
  • 고조파에 의한 전력품질저하로 인해 전기설비의 성능저하, 소음, 진동 등의 장해현상이 발생한다. 또한 앞으로 에너지 이용 효율을 높이기 위한 대책으로 반도체 회로를 사용하는 에너지 절약장치가 널리 보급되고, 전동기 속도 제어장치, 에너지 저장장치 등 에너지 변환장치의 사용이 증가될 전망이어서 고조파의 발생은 필연적이며 그 문제점은 심각하게 대두될 것이다. 이러한 고조파에 의한 장애를 해결하기 위해서는 전압, 전류, 전력, 역률, 고조파 차수별 성분 및 고조파 총합 왜형률 등의 정확한 전력품질을 측정하고 분석할 필요가 있다. 본 연구에서는 이러한 고조파 관련 전력품질을 측정하고 분석할 수 있는 저가형 측정시스템을 개발하였으며 3상 4선식 계통에서 전력품질을 측정하고 분석함으로써 그 성능을 입증하였다.

불평형부하 시 독립형 인버터의 데드타임 보상기법 (Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load)

  • 정진용;조종민;이준원;채우규;차한주
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.