• Title/Summary/Keyword: Total harmonics distortion

Search Result 148, Processing Time 0.022 seconds

Harmonic Analysis of a Modular Multilevel Converter Using Double Fourier Series

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Ahn, Jin Hong;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.298-306
    • /
    • 2018
  • This paper presents a harmonic analysis of the modular multilevel converter (MMC) using a double Fourier series (DFS) algorithm. First, the application of DFS for harmonic calculation in the MMC is made by considering the effect of arm inductor. The analytical results are then confirmed by comparing with the simulation results of using the fast Fourier transform (FFT) algorithm. Finally, distribution of harmonics and total harmonic distortion (THD) in the MMC will be analyzed in three cases: harmonics versus number of levels of MMC, harmonics versus total switching frequency and harmonics versus modulation index. The simulation results are performed in the PSCAD/EMTDC simulation program in order to verify the analytical results obtained by Matlab programming.

Harmonics Assessment for an Electric Railroad Feeding System using Moments Matching Method (모멘트 정합 방법(Moment Matching Method)을 이용한 전기철도 급전시스템의 고조파 평가)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Generally, an electric railroad feeding system has many problems due to the different characteristics in contrast with a load of general three-phase AC electric power system. One of them is harmonics problem caused by the switching device existing in the feeding system, and moreover, the time-varying dynamic loads of rail way is inherently another cause to increase this harmonics problem. In Korea power systems, the electric railroad feeding system is directly supplied from the substation of KEPCO. Therefore, if voltages fluctuation or unbalanced voltages are created by the voltage and current distortion or voltage drop during operation, it affects directly the source of supply. The trainloads of electric railway system have non-periodic but iterative harmonic characteristics as operating condition, because the electric characteristic of the electric railroad feeding system is changed by physical conditions of the each trainload. According to the traditional study, the estimation of harmonics has been performed by deterministic way using the steady state data at the specific time. This method is easy to analyze harmonics, but it has limits in some cases which needs an assessment of dynamic load and reliability. Therefore, this paper proposes the probabilistic estimation method, moments matching method(MW) in order to overcome the drawback of deterministic method. In this paper, distributions for each harmonics are convolved to obtain the moments and cumulants of TDD(Total Demand Distortion), and this can be generalized for any number of trains. For the case study, the electric railway system of LAT(Intra Airport Transit) in Incheon International Airport is modeled using PSCAD/EMTDC dynamic simulator. The raw data of harmonics for the moments matching method is acquired from simulation of the LAT model.

Infuences of Harmonic Current on Electrical Characteristics of an Induction Motor (유도전동기의 전기적 특성에 미치는 고조파 전류의 영향)

  • Park Yang-Birm;Kim Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.67-72
    • /
    • 2005
  • This paper proposes the influences of harmonic current on electrical characteristics of an induction motor. Recently, a power system gets more worse as nonlinear load makes harmonics to affect energy lose of system and shorten lift of machines. In this paper, the electrical effect and THD(Total Harmonic Distortion) of harmonic current to an induction motor which is of great use in the industrial fields are measured and analyzed. A power conversion equipment(inverter) is installed to produce harmonics and variable reactors are installed to reduce the harmonics having an effect on the input terminal. Then the effects of the reactors are measured and analyzed. Also average voltage, current, power and 110 by harmonics are analyzed. The results show that Inn is increased by increasing load of the induction motor and installing reactors. And the harmonics affecting the input terminal are decreased by increasing reactor 3[mH] to 6[mH], however, average power of the induction motor is decreased. Therefore, it is very important that reactors should be carefully installed considering the merits and demerits resulting from the installation of reactors.

The Control Technique of 3 Phase NPC PWM Inverter to control fixed Total Harmonic Distortion (종합 고조파 왜율 일정 제어를 위한 삼상 NPC PWM 인버어터의 제어 기법)

  • Song, Eon-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.565-567
    • /
    • 1994
  • This paper presents a software based NPC PWM inverter control technique to eliminate the harmonics in the output waveforms of inverter. The proposed control technique is able to keep down total harmonic distortion and significantly improve the performance of the inverter. In the control node where the frequency ratio is 36 and the modulation index is $1.2\sim2.0$, the proposed inverter has been operated wi thin 5% Total Harmonic Distortion.

  • PDF

Design and Implementation of a Multi Level Three-Phase Inverter with Less Switches and Low Output Voltage Distortion

  • Ahmed, Mahrous E.;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.593-603
    • /
    • 2009
  • This paper proposes and describes the design and operational principles of a three-phase three-level nine switch voltage source inverter. The proposed topology consists of three bi-directional switches inserted between the source and the full-bridge power switches of the classical three-phase inverter. As a result, a three-level output voltage waveform and a significant suppression of load harmonics contents are obtained at the inverter output. The harmonics content of the proposed multilevel inverter can be reduced by half compared with two-level inverters. A Fourier analysis of the output waveform is performed and the design is optimized to obtain the minimum total harmonic distortion. The full-bridge power switches of the classical three-phase inverter operate at the line frequency of 50Hz, while the auxiliary circuit switches operate at twice the line frequency. To validate the proposed topology, both simulation and analysis have been performed. In addition, a prototype has been designed, implemented and tested. Selected simulation and experimental results have been provided.

A Novel Harmonic Compensation Method for the Single Phase Grid Connected Inverters (단상 계통연계 인버터를 위한 새로운 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.144-146
    • /
    • 2018
  • In order to meet the harmonics standards such as IEEE 519 and P1547 the output quality of a grid connected inverter should satisfy a certain level of Total Harmonic Distortion (THD) value. However, the output quality of an inverter gets degraded due to the grid voltage harmonics, the dead time effects and the nonlinearity of the switches, which all contributes to a higher THD value of the output. In order to meet the required THD value for the inverter output under the distorted grid condition the use of harmonic controller is essential. In this paper a novel feedforward harmonic compensation method is proposed in order to effectively eliminate the low order harmonics in the inverter current to the grid. In the proposed method, unlike the conventional harmonic control methods, the hamonic components are directly compensated by the feedforward terms generated by the PR controller with the grid current in the stationary frame. The proposed method is simple in implementation but powerful in eliminating the harmonics from the output. The effectiveness of proposed method is verified through the PSIM simulation and the experiments with a 5kW single phase grid connected inverter.

  • PDF

A Study on the Harmonic Characteristics of SMPS Load in LED Display Board (LED 전광판용 SMPS의 고조파 특성에 관한 연구)

  • Park, Joon-Yeol;Ko, Man-Suk;Jang, Rae-Chang;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.36-43
    • /
    • 2013
  • The prevalence of electronic devices in our modern life is accompanied with the generation of harmonics caused by the nonlinear characteristic load. Especially, the employment of LED have brought the rapid use of SMPS. SMPS is used for supplying the constant DC electric power to the LED display board, but it has a big problem which gives birth of harmonics causing by its high-speed switching. measurement HIOKI 3196 equipment to solve these harmonics were measured. In this study, we are LED Display Board Load Measuring the impedance response with $X_L$ changes for removing harmonics in the measured. And we adopted the suitable passive filter by the impedance response characteristic obtained in the $X_L$ variation experiments. We are trying to deeply the application of passive harmonic filter characteristics that generation in the LED Display Board through EDSA LED simulation.

An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter (단상 계통연계 인버터를 위한 개선된 고조파 보상법)

  • Khan, Reyyan Ahmad;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

Development of Power Quality Measurement System for Harmonics Diagnosis of Electrical Equipment (전기설비의 고조파 진단을 위한 전력품질 측정시스템의 개발)

  • 유재근;이상익;전정채
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2003
  • Because of falling-off in power quality by harmonics, obstacles like lowering of capability, noise, vibration of power facilities and so on are occurred. Also generation of harmonics is inevitable and the point at harmonics is seriously gathering strength because energy saving installation using semiconductor circuit as countermeasures to enhance energy efficiency will be broadly spread and the use of energy conversion equipment like motor speed control contrivance, energy keeping installation and so on will increase, in the future. In order to eliminate harmonics obstacle, precision measurement and analysis on voltage, current, power factor, the each ingredient of harmonic order, the percentage of total harmonic distortion, and so forth are needed. In this paper, we developed low-cost measurement system to measure and analyze power quality connected with harmonics and verified it's performance by measuring and analyzing power quality in the three-phase and four-wire system.

Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load (불평형부하 시 독립형 인버터의 데드타임 보상기법)

  • Jeong, Jinyong;Jo, Jongmin;Lee, Junwon;Chae, Woo-Kyu;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.