• Title/Summary/Keyword: Total ammonia nitrogen

Search Result 509, Processing Time 0.024 seconds

Effects of extruded pellet and moist pellet on growth performance, body composition, and hematology of juvenile olive flounder, Paralichthys olivaceus

  • Lee, Seunghan;Moniruzzaman, Mohammad;Bae, Jinho;Seong, Minj;Song, Yu-jin;Dosanjh, Bakshish;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.8
    • /
    • pp.32.1-32.6
    • /
    • 2016
  • A feeding trial was conducted to evaluate the effects of two different sizes of extruded pellets (EP) ($EP_1$ - 3 mm or $EP_2$ - 5 mm) and a moist pellet (MP) in olive flounder, Paralichthys olivaceus, reared in semi-recirculation system. A total of 450 fish with an average initial weight of $5.0{\pm}0.2g$ (mean ${\pm}$ SD) were fed one of the three experimental diets in triplicate groups. At the end of a 6-week feeding trial, weight gain, specific growth rate, and feed efficiency of fish fed EP diets were significantly higher than those of fish fed MP (P < 0.05). Water quality parameters like turbidity, total ammonia nitrogen, and total phosphorous from tanks of fish fed $EP_1$ and $EP_2$ were significantly lower than those from tanks of fish fed MP. Blood plasma glutamic oxaloacetic transaminase and glucose concentration were significantly higher in fish fed MP diet compared to fish fed EP diets (P < 0.05). Whole body crude protein contents in fish fed EP diets were higher than those from the fish fed MP diet. Whole body amino acid content like threonine, aspartic acid, serine, tyrosine, and cystine were found to be significantly higher in fish fed EP diets than those in fish fed MP diet. In considering overall performance of olive flounder, $EP_2$ diet could be recommended for the successful aquaculture of this important fish species.

Performance of Rotating Biological Contactor under Various Hydraulic Residence Time on thle Removal of Total Ammonia Nitrogen and COD in a Simnulated Water Recirculating System (모의 순환여과식 실험장치에서 회전원판반응기 (RBC)에 의한 순환수처리)

  • SUH Kuen-Hack;KIM Byong-Jin;LIM Sung-Il;CHO Jin-Koo;KIM Yong-Ha;OH Chang-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.180-185
    • /
    • 1999
  • Rotating Biological Contactor (RBC) was tested for the treatment of artificial rearing water in n simulated aquaculture system. Performance of RBC on the removal of TAN and COD was evaluated by controlling hydraulic residence time (HRT). As HRT of RBC was increased, TAN removal rate ana removal efficiency of RBC and TAN concentration of rearing water were increased, but COD removal rate was decreased. Total alkalinity consumption rate was increased by increasing HRT of RBC. Ratio between total alkalinity consumption rate and TAN removal rate was 7.73. HRT for maintaining lowest TAN and COD concentration of artificial rearing water was 14,6 minutes and at that condition TAN and COD concentration of the water was 1.28 and $5.59 g/m^3$, respectively.

  • PDF

A Study on Estimating Air Pullution in the Port of Incheon (인천항의 대기오염물질 배출량 산정 연구)

  • Lee, Jeong-Uk;Lee, Hyang-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.143-157
    • /
    • 2021
  • International organizations such as the World Health Organization, the Organization for Economic Development and Cooperation, and major developed countries recognize the seriousness of air pollution. International organizations such as the International Maritime Organization have also implemented various regulations to reduce air pollution from ships. In line with this international trend, the government has also enacted a special law on improving air quality in port areas, and is making efforts to reduce air pollution caused by ports. The purpose of the Special Act is to implement comprehensive policies to improve air quality in port areas. This study sought to identify the emissions of each source of air pollutants originating from the port and prepare basic data on setting the policy priorities. To this end, the analysis was conducted in six categories: ships, vehicles, loading and unloading equipment, railways, unloading/wild ash dust, road ash dust, and the methodology presented by the European Environment Agency(EEA) and the United States Environmental Protection Agency(EPA). The pollutants subject to analysis were analyzed for carbon monoxide(CO), nitrogen oxides (NOX), sulfur oxides(SOX), total airborne materials(TSP), particulate matter(PM10, PM2.5), and ammonia(NH3). The analysis showed a total of 7,122 tons of emissions. By substance, NOX accounted for the largest portion of 5,084 tons, followed by CO (984 tons), SOX (530 tons), and TSP (335 tons). By source of emissions, ships accounted for the largest portion with 4,107 tons, followed by vehicles with 2,622 tons, showing high emissions. This proved to be the main cause of port air pollution, with 57.6% and 36.8% of total emissions, respectively, suggesting the need for countermeasures against these sources.

Essential oil mixture on rumen fermentation and microbial community - an in vitro study

  • Kim, Hanbeen;Jung, Eunsang;Lee, Hyo Gun;Kim, Byeongwoo;Cho, Seongkeun;Lee, Seyoung;Kwon, Inhyuk;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.808-814
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effects of essential oil mixture (EOM) supplementation on rumen fermentation characteristics and microbial changes in an in vitro. Methods: Three experimental treatments were used: control (CON, no additive), EOM 0.1 (supplementation of 1 g EOM/kg of substrate), and EOM 0.2 (supplementation of 2 g EOM/kg of substrate). An in vitro fermentation experiment was carried out using strained rumen fluid for 12 and 24 h incubation periods. At each time point, in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (IVNDFD), pH, ammonia nitrogen ($NH_3-N$), and volatile fatty acid (VFA) concentrations, and relative microbial diversity were estimated. Results: After 24 h incubation, treatments involving EOM supplementation led to significantly higher IVDMD (treatments and quadratic effect; p = 0.019 and 0.008) and IVNDFD (linear effect; p = 0.068) than did the CON treatment. The EOM 0.2 supplementation group had the highest $NH_3-N$ concentration (treatments; p = 0.032). Both EOM supplementations did not affect total VFA concentration and the proportion of individual VFAs; however, total VFA tended to increase in EOM supplementation groups, after 12 h incubation (linear; p = 0.071). Relative protozoa abundance significantly increased following EOM supplementation (treatments, p<0.001). Selenomonas ruminantium and Ruminococcus albus (treatments; p<0.001 and p = 0.005), abundance was higher in the EOM 0.1 treatment group than in CON. The abundance of Butyrivibrio fibrisolvens, fungi and Ruminococcus flavefaciens (treatments; p<0.001, p<0.001, and p = 0.005) was higher following EOM 0.2 treatment. Conclusion: The addition of newly developed EOM increased IVDMD, IVNDFD, and tended to increase total VFA indicating that it may be used as a feed additive to improve rumen fermentation by modulating rumen microbial communities. Further studies would be required to investigate the detailed metabolic mechanism underlying the effects of EOM supplementation.

Rumen fermentation, methane production, and microbial composition following in vitro evaluation of red ginseng byproduct as a protein source

  • Hamid, Muhammad Mahboob Ali;Moon, Joonbeom;Yoo, Daekyum;Kim, Hanbeen;Lee, Yoo Kyung;Song, Jaeyong;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.801-811
    • /
    • 2020
  • The main objective of this in vitro study was to evaluate red ginseng byproduct (RGP) as a protein resource and its effects on rumen fermentation characteristics, microflora, CO2, and CH4 production in ruminants. Four treatments for in vitro fermentation using buffered rumen fluid over a 48 h incubation period were used: 1, RGP; 2, corn gluten feed (CGF); 3, wheat gluten (WG); and 4, corn germ meal. In vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), in vitro crude protein digestibility (IVCPD), volatile fatty acids, pH, and ammonia nitrogen (NH3-N) were estimated after 48 h incubation. Gas production was investigated after 3, 6, 12, 24, 36 and 48 h. The CO2 and CH4 were evaluated after 12, 24, 36, and 48 h. A significant difference in total gas production and CO2 emissions was observed (p < 0.01) at all incubation times. CH4 production in RGP were higher (p < 0.05) than that in other treatments but a higher CH4 portion in the total gas production was observed in WG (p < 0.05) at 48 h incubation. The IVDMD, IVNDFD, and IVCPD of RGP was lower than those of other conventional ingredients (p < 0.01). The RGP had the lowest NH3-N value among the treatments (p < 0.01). The RGP also had the lowest total VFA concentration (p < 0.01), but presented the highest acetate proportion and acetate to propionate ratio among the treatments (both, p < 0.01). The abundance of Prevotella ruminicola was higher in RGP than in WG (p < 0.01), whereas RGP has lower methanogenic archaea (p < 0.01). In conclusion, based on the nutritive value, IVDMD, low NH3-N, and decreased methanogenic archaea, RGP inclusion as a protein source in ruminant diets can be an option in replacing conventional feed sources.

Effects of different levels of dietary crude protein on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows

  • Hongjun Kim;Xinghao Jin;Cheonsoo Kim;Niru Pan;Yoo Yong Kim
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1263-1273
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effects of crude protein (CP) levels on the physiological response, reproductive performance, blood profiles, milk composition and odor emission in gestating sows. Methods: Seventy-two multiparous sows (Yorkshire×Landrace) of average body weight (BW), backfat thickness, and parity were assigned to one of six treatments with 10 or 11 sows per treatment in a completely randomized design. Experimental diets with different CP levels were as follows: i) CP11, corn-soybean-based diet containing 11% CP; ii) CP12, corn-soybean-based diet containing 12% CP; iii) CP13, corn-soybean-based diet containing 13% CP; iv) CP14, corn-soybean-based diet containing 14% CP; v) CP15, corn-soybean-based diet containing 15% CP; and vi) CP16: corn-soybean-based diet containing 16% CP. Results: There was no significant difference in the performance of sow or piglet growth when sows were fed different dietary protein levels. Milk fat (linear, p = 0.05) and total solids (linear, p = 0.04) decreased as dietary CP levels increased. Increasing dietary CP levels in the gestation diet caused a significant increase in creatinine at days 35 and 110 of gestation (linear, p = 0.01; linear, p = 0.01). The total protein in sows also increased as dietary CP levels increased during the gestation period and 24 hours postpartum (linear, p = 0.01; linear, p = 0.01). During the whole experimental period, an increase in urea in sows was observed when sows were fed increasing levels of dietary CP (linear, p = 0.01), and increasing blood urea nitrogen (BUN) concentrations were observed as well. In the blood parameters of piglets, there were linear improvements in creatinine (linear, p = 0.01), total protein (linear, p = 0.01), urea (linear, p = 0.01), and BUN (linear, p = 0.01) with increasing levels of dietary CP as measured 24 hours postpartum. At two measurement points (days 35 and 110) of gestation, the odor gas concentration, including amine, ammonia, and hydrogen sulfide, increased linearly when sows fed diets with increasing levels of dietary CP (linear, p = 0.01). Moreover, as dietary CP levels increased to 16%, the odor gas concentration was increased with a quadratic response (quadratic, p = 0.01). Conclusion: Reducing dietary CP levels from 16% to 11% in a gestating diet did not exert detrimental effects on sow body condition or piglet performance. Moreover, a low protein diet (11% CP) may improve dietary protein utilization and metabolism to reduce odor gas emissions in manure and urine in gestating sows.

Effects of Feeding Heat Treated Protein and Mineral Complex on In Vitro Fermentation Characteristics, Milk Production and Composition of Holstein Dairy Cows (열처리 단백질-광물질 복합제제 첨가가 In Vitro 발효성상과 착유우의 유량 및 유성분에 미치는 영향)

  • Choi, N.J.;Bae, G.S.;Nam, K.P.;Chang, M.B.;Um, J.S.;Ko, J.Y.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.541-548
    • /
    • 2002
  • This study, consisting of two experiments, was conducted to determine the effects of feeding heat treated protein and mineral complex (HPM) on milk production and composition, and ruminal fermentation of Holstein dairy cows. In in vitro experiment, HPM levels were 0, 0.2, 1 and 2%, and Timothy hay, which was substrate, was milled as 1 mm size, and the effects of HPM on pH, ammonia and VFA were analyzed after incubation times of 0, 6, 12, 24 and 48 h, respectively. The pH and ammonia production were not significantly different between treatments during the incubation. In addition, generally, total VFA and individual VFA were not affected by HPM on 0, 6 and 24 h. While, total VFA and individual VFA were increased in 0.2% and 1% of HPM supplemented treatments, but decreased in 2% of HPM treatment compared with control on 12 h. On 48 h, total VFA and individual VFA were increased in HPM treatments compared to control (P<0.05). However, A/P ratio was not affected by HPM supplementation. Gas production was higher in HPM treatment compared to control on 24 h (P<0.05) and 48 h (P<0.05). In lactating experiment, fourteen lactating Holstein cows were used for 4 months in a cross over experimental design. There were two treatments; no added HPM as a control and 0.2% of HPM added as a test treatment. Daily milk yield (P<0.001), 4% FCM (P<0.001), milk protein (P<0.05) and SNF (solid not fat; P<0.05) were increased in HPM treatment compared to control. While, milk fat, MUN (milk urea nitrogen) and SCC (somatic cell count) were not significantly different between treatments.

Removal Efficiency of Water Pollutants and Malodor of Pig Slurry using Biofiltration System (여재순환장치를 이용한 돈분뇨 슬러리의 오염물질 및 악취제거 효율)

  • Choi, D.Y.;Kwag, J.H.;Jeong, K.H.;Park, K.H.;Huh, M.Y.;Kim, J.H.;Kang, H.S.;Jeon, K.H.;Park, C.H.;Jeong, J.W.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • The pig slurry is one of important fertilizer source for production of crops in recent years, but it has many controversial points of utilization such as offensive odor, lack of spread equipment and farmland possession, respectively. This study was carried out in order to remove water pollutants and malodor of pig slurry using biofiltration system. The biofiltration system consists of pig slurry separator, mixing shift and attached blade for sawdust or ricehull, air injection nozzle and outlet for pig slurry and sawdust or ricehull. The characteristics pH, $BOD_5$ (Biochemical Oxygen Demand), $COD_{Mn}$ (Chemical Oxygen Demand), SS (Suspended Solid), T-N (Total Nitrogen), T-P (Total Phosphorus) of the untreated pig slurry used in this study were 7.2, 34,450, 24,604, 71,000, 4,194, $1,631\;ml/{\ell}$, respectively. The $NH_3$ (Ammonia) and $H_2S$(Hydrogen Sulfide) concentration were 70.0, 9.6 ppm, respectively. The initial total microorganisms of pig slurry were $5.0{\times}10^3\;cfu/ml$, and Salmonella, Bacillus were $5.8{\times}10^2$, $1.1{\times}10^3\;cfu/ml$, respectively. The filtration system was very effective on removal of water pollutants of pig slurry. The removal efficiency of the offensive odor of ammonia and hydrogen sulfide in sawdust was higher than those of ricehull. The total microorganisms and bacillus of pig slurry are on the increase by sawdust and ricehull, but Salmonella showed a tendency to decrease in number after that time. Accordingly, the filtration system was very effective to produce a good quality pig slurry.

  • PDF

Effect of Feeding Lactobacillus reuteri to Broiler on Growing Performance, Intestinal Microflora and Environmental Factor (lactobacillus reuteri의 급여가 육계의 성장 특성, 장내미생물 변화, 혈청 성상 및 사육환경에 미치는 영향)

  • 김상호;박수영;이상진;류경선
    • Korean Journal of Poultry Science
    • /
    • v.30 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • A feeding trial was carried out to evaluate the effects of feeding Lactobacillus reuteri culture(LRC) on the performance, nutrients digestibility, intestinal microflora, serum metabolites, ammonia generation and litter dampness in broiler chicks. Four hundred eighty, one day old male chicks were fed into none, 0.1, 0.2 and 0.4% of LRC supplementation fer seven weeks. Basal diets excluded antibiotics contained ME 3,100, 3,100 kcal/kg, and CP 22.0, 20.0% for starter and grower, respectively. Weight gain of chicks fed LRC was significantly higher than no supplemental group in overall period(P<0.05). Feed intake was the highest in the 0.1% LRC, but not statistically different from other treatments. Feed conversion showed no significance among treatments. Viable Lactobacillus spp. number of chicks fed 0.2 and 0.4% LRC was significantly higher in cecum at seven weeks of age compared to the none(P<0.05). The tendency of anaerobes number was similar to Lactobacillus spp in ileum and cecum. Total number of E. coli and Salmonella were no difference in all treatments. In serum metabolites, feeding LRC increased triglyceride, and inorganic phosphorus, but no different total protein, albumin, total cholesterol, glucose, blood urea nitrogen and Ca. Nutrients digestibility improved significantly in 0.4% LRC compared to that of none(P<0.05). Fecal NH$_3$, gas generation was greatly decreased in the LRC supplemental groups(P<0.05). Moisture contents of bedding was also significantly decreased in LRC feeding group. It was concluded from the present study that feeding Lactobacillus reuteri culture improved the growth performance and nutrients digestibility of broiler chicks and minimize the fecal noxious gas emission.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF