• Title/Summary/Keyword: Torsional box

Search Result 100, Processing Time 0.024 seconds

Analysis of Static and Dynamic Characteristics of Reinforced Roadbed Materials (철도 강화노반재료의 정ㆍ동적 특성 분석)

  • 황선근;신민호;이성혁;이시한;최찬용
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The analysis of static and dynamic characteristics of reinforced roadbed materials was performed through model and laboratory tests. The strength characteristic of reinforced roadbed materials such as HMS-25 and soil were investigated through the unconfined axial compression test, the model soil box test and the combined resonant column and torsional shear test. The unconfined axial compression strength of HMS-25 shows a steady increasement in strength due to the chemical hardening reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects, such as, bearing capacity and settlement. The combined resonant column and torsional shear test result indicates that shear modulus of HMS-25 and soil increase with the power of 0.5 to the confining pressure and linear relationship to normalized shear modulus and damping ratio.

  • PDF

Vibration Reduction or the Gear Box of an NC Machine (자동선반 기어박스의 진동방지)

  • 최헌호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.119-125
    • /
    • 1999
  • This article proposes the analytical and experimental approaches for the reduction of vibration generated in the gear box of an NC machine. The lateral critical speed of main spindle and torsional natural frequencies were analyzed and the impact testing of gear box was performed. These results were compared with the forced operating speeds, The vibration was much diminished by redesign of gear module and reinforcement of box structure.

  • PDF

A Study on the Static Analysis of the Cintinuous Curved Box Girder Bridge using Energy Method (에너지법에 의한 연속 곡선박스형교의 정적해석에 관한 연구)

  • Chang, Byung Soon;Seo, Sang Keun;Lee, Dong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.163-176
    • /
    • 2001
  • In this paper, the stress resultants and displacements of simply supported curved girder based on the flexural torsional theory considering torsional warping effects are analyzed. And elastic equations of continuous curved girder are obtained by using energy method. Also, bending moment warping torsional moment diagram, pure torsional moment diagram, shearing force diagram, and deflection diagram of continuos curved girder bridge subjecting to vertical loads and uniform loads are presented.

  • PDF

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

Reliability-Based Safety Assessment of Precast Segmental Prestressed Concrete Box Girder Bridges (신뢰성에 기초한 프리캐스트 세그멘탈 PC박스거더교량의 안전도분석평가)

  • 조효남;지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.35-42
    • /
    • 1995
  • One of the main objectives of this study is to propose a realistic limit state model for reliability-based safety assessment of precast segmental prestressed concrete box girder bridges, considering 1) combined effects of bending, shear and torsional forces, and 2) the difference between transverse reinforcments of box girder. A improved limit state model is derived from a modified interaction equation compared with the Bruno's equation. A Drectional sampling algorithm is used for reliability analysis of the proposed model.

  • PDF

Evaluation of Applicability of HMS-25 as the Railroad Roadbed Material (철도 노반재로서의 수경성 입도 조정 고로슬래그(HMS-25)의 적용성 평가)

  • 황선근;이성혁;이시한;최찬용
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.157-165
    • /
    • 2000
  • The applicability and performance of HMS-25 as the railroad roadbed materials were evaluated through the model and laboratory tests. The uniaxial compression test of HMS-25, model soil box test, and combined resonant column and torsional shear test were performed for static and dynamic analysis of railroad roadbed. The uniaxial compression test result of HMS-25 shows steady increase in strength due to hardening chemical reaction between HMS-25 and water. The result of model soil box test reveals that railroad roadbed of HMS-25 is better than that of soil in several aspects such as bearing capacity and settlement. The combined resonant column and torsional that shear test result indicates that shear modulus of HMS-25 increases with the power of 0.5 to the confining pressure and that shear modulus increases with the increase of curing period.

  • PDF

Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (복합트러스교의 격점구조별 비틀림 거동)

  • Jung, Kwang-Hoe;Lee, Sang-Hyu;Yi, Jong-Won;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • HTB (hybrid truss bridge) steel truss webs instead of concrete webs in prestressed box girder bridges has been widely used in, because of its structural benefit such as relatively less self-weight and good aesthetics due to open web structure. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The researches were performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showned that HTB applied to a curved bridge or a eccentric loading bridge, characteristic has a weak torsional capacity compared to an ordinary PSC box girder bridges due to the open structure of HTB. In this study, three box shaped hybrid truss specimens were made and the torsional test and evaluation for them were performed in order to find out the torsional behavior of HTB according to the connection system.

Static Aanlysis of Curved box Girder Bridge with Variable Cross Section by Transfer Matrix Method (전달행렬법에 의한 변단면 곡선 상자형 거더교의 정적해석)

  • Kim, Yong-Hee;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.109-120
    • /
    • 2003
  • The state-of-art of curved box girder bridge with cross section design has advanced in various area. In these days, several analytical techniques for behaviors of curved box girder bridges cross section are available to engineers. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method. Therefore, this paper proposed the static analysis method of curved box bridge with cross section by transfer matrix method based on pure-torsional theory and the optimal span ratio/variable cross section ratio of 3 span continuous curved box girder bridge.

Torsional Vibration Analysis of a Multi-Stage Reduction Gear System (다단 감속치차계의 비틀림진동 해석)

  • 이동환;김영철;최상규;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.307-312
    • /
    • 1996
  • A torsional vibration analysis of a multi-stage reduction gear box connected to a gas turbine system is presented. For a free vibration analysis the Modified Hibner Branch Method, so called "Blank Matrix Method", and the .lambda.-Matrix Method are used in the modeling and the eigenvalue solution, respectively. Also, a short circuit forced analysis of the system is performed, utilizing the energy method modeling. It is shown that the results of the free vibration analysis have the same tendency as those of the short circuit analysis. analysis.

  • PDF

Analysis of curved multicell box girder assemblages

  • Razaqpur, A. Ghani;Li, Hangang
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • A method of analysis is proposed for curved multicell box girder grillages. The method can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional warping, distortion, distortional warping, and shear lag. This element is an extension of a straight element that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between adjoining elements in those regions are discussed. The results of the analysis showed good agreement with the shell finite element results, but the proposed method of analysis needs a fraction of the time and effort compared to the shell finite element analysis.