• Title/Summary/Keyword: Torsional Moment

Search Result 238, Processing Time 0.023 seconds

Three Dimensional Correction Factors for the Added Mass Moment of Inertia of Ships in Torsional Vibration (선체(船體)비틂진동(振動)에 있어서의 부가관성(附加慣性)모우멘트 3차원수정계수(次元修正係數))

  • K.C.,Kim;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.15-22
    • /
    • 1974
  • As for the added mass moment of inertia of ships in torsional vibration, it seems that the works by T. Kumai[1,2] are the only systematic one available currently. The work[1] is for the calculation of the two dimensional correction factors with finitely-long elliptic cylinders as the mathematic model. In this work the authors recalculated the above factors, $J_{\tau}$, with the same mathematic model and the same problem formulation, and presented the numerical results in Fig. 1. The reason why the reinvestigation was done was that in Kumai's work he obtained the solutions of the Mathieu equations, which was derived from the problem formulation for the velocity potential, under the assumption that the dummy constant q involved in the equations was always far less than unity, whereas in fact it takes values within the region of $0<q{\leq}{\infty}$ in sequence. As a result the authors found two remarkable differences in general features of $J_{\tau}$(refer to Fg.3); one that the authors' numerical results are considerably higher than the results given in [2], and the other that for a given number of node those have properties of decreasing monotonically with increase of the beam-draft ratio while these rapidly decrease from a maximum value of near at B/T=2.00 with B/T becoming greater or less than ratio. It seems that the latter trend was resulted from the fact that the assumption of $q{\ll}1$ employed in [2] was more closely satisfied in the vicinity of B/T=2.00.

  • PDF

Evaluating the reliability of using the deflection amplification factor to estimate design displacements with accidental torsion effects

  • Lin, Jui-Liang;Wang, Wei-Chun;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.443-462
    • /
    • 2015
  • Some model building codes stipulate that the design displacement of a building can be computed using the elastic static analysis results multiplied by the deflection amplification factor, $C_d$. This approach for estimating the design displacement is essential and appealing in structural engineering practice when nonlinear response history analysis (NRHA) is not required. Furthermore, building codes stipulate the consideration of accidental torsion effects using accidental eccentricity, whether the buildings are symmetric-plan, or asymmetric-plan. In some model building codes, the accidental eccentricity is further amplified by the torsional amplification factor $A_x$ in order to minimize the discrepancy between statically and dynamically estimated responses. Therefore, this warrants exploration of the reliability of statically estimated design displacements in accordance with the building code requirements. This study uses the discrepancy curves as a way of assessing the reliability of the design displacement estimates resulting from the factors $C_d$ and $A_x$. The discrepancy curves show the exceedance probabilities of the differences between the statically estimated design displacements and NRHA results. The discrepancy curves of 3-story, 9-story, and 20-story example buildings are investigated in this study. The example buildings are steel special moment frames with frequency ratios equal to 0.7, 1.0, 1.3, and 1.6, as well as existing eccentricity ratios ranging from 0% to 30%.

Design Parametric Analysis of Radial Beam Coupling using Finite Element Analysis (유한요소 해석을 통한 레이디얼 빔 커플링의 설계인자 분석)

  • Lee, Chibum;Park, Yeong Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.537-543
    • /
    • 2013
  • In this paper, a novel radial beam coupling model was proposed and the design parameters were studied for the efficient transmission of torque. To develop a high performance radial beam coupling, an analytical way to predict the performance in design phase is required. One of the best ways to estimate the performance of the coupling without manufacturing is to evaluate the stress and torsional stiffness by building a finite element model with a special attention to the radial beam cutting part. For the best results of FEA, the material properties were obtained through testing. To verify the reliability of finite element model, the results of FEA were compared with the experiments. The main design parameters of radial beam cutting width, radial beam cutting depth, and radial beam cutting direction were considered for the performance of radial beam coupling.

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

Effect of Initial Uniform Moment on Lateral Free Vibration of Arches (등분포 모멘트를 받는 아치의 횡 자유진동)

  • 염응준;한택희;임남형;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • Recently, arches are used structurally because of their high in-plane stiffness and strength, which result from their ability to transmit most of the applied loading by axial forces actions, so that the bending actions are reduced. On the other hand, the resistances of arches to (out-of-plane,) flexural-torsional behavior depend on the rigidities EI/sub y/, for lateral bending, GJ for Uniform torsion, and EI/sub w/ for warping torsion which are related to axial stress for flexural-torsional behavior. The resistance of an arch to out-of-plane behavior may be reduced by its in-plane curvature, and so it may require significant lateral bracing. Thus. it is supposed that In-plane preloading which cause an axial stress, have an effect on out-of-plane free vibration behavior of arches. Because axial stresses caused increase or decrease out-of-plane stiffness. But study about this substance is insufficient. In this thesis, We will study an effect of preloading on lateral free vibration of arches, using finite element method based on Kang and Yoo's curved beam theory (about curved beam element have 7 degree of freedom including warping) with FORTRAN programming.

  • PDF

Suppression of aerodynamic response of suspension bridges during erection and after completion by using tuned mass dampers

  • Boonyapinyo, Virote;Aksorn, Adul;Lukkunaprasit, Panitan
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The suppression of aerodynamic response of long-span suspension bridges during erection and after completion by using single TMD and multi TMD is presented in this paper. An advanced finite-element-based aerodynamic model that can be used to analyze both flutter instability and buffeting response in the time domain is also proposed. The frequency-dependent flutter derivatives are transferred into a time-dependent rational function, through which the coupling effects of three-dimensional aerodynamic motions under gusty winds can be accurately considered. The modal damping of a structure-TMD system is analyzed by the state-space approach. The numerical examples are performed on the Akashi Kaikyo Bridge with a main span of 1990 m. The bridge is idealized by a three-dimensional finite-element model consisting of 681 nodes. The results show that when the wind velocity is low, about 20 m/s, the multi TMD type 1 (the vertical and horizontal TMD with 1% mass ratio in each direction together with the torsional TMD with ratio of 1% mass moment of inertia) can significantly reduce the buffeting response in vertical, horizontal and torsional directions by 8.6-13%. When the wind velocity increases to 40 m/s, the control efficiency of a multi TMD in reducing the torsional buffeting response increases greatly to 28%. However, its control efficiency in the vertical and horizontal directions reduces. The results also indicate that the critical wind velocity for flutter instability during erection is significantly lower than that of the completed bridge. By pylon-to-midspan configuration, the minimum critical wind velocity of 57.70 m/s occurs at stage of 85% deck completion.

Investigation on the performance of a new pure torsional yielding damper

  • Mahyari, Shahram Lotfi;Riahi, Hossein Tajmir;Esfahanian, Mahmoud Hashemi
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.515-530
    • /
    • 2020
  • A new type of pure torsional yielding damper made from steel pipe is proposed and introduced. The damper uses a special mechanism to apply force and therefore applies pure torsion in the damper. Uniform distribution of the shear stress caused by pure torsion resulting in widespread yielding along pipe and consequently dissipating a large amount of energy. The behavior of the damper is investigated analytically and the governing relations are derived. To examine the performance of the proposed damper, four types of the damper are experimentally tested. The results of the tests show the behavior of the system as stable and satisfactory. The behavior characteristics include initial stiffness, yielding load, yielding deformation, and dissipated energy in a cycle of hysteretic behavior. The tests results were compared with the numerical analysis and the derived analytical relations outputs. The comparison shows an acceptable and precise approximation by the analytical outputs for estimation of the proposed damper behavior. Therefore, the relations may be applied to design the braced frame system equipped by the pure torsional yielding damper. An analytical model based on analytical relationships was developed and verified. This model can be used to simulate cyclic behavior of the proposed damper in the dynamic analysis of the structures equipped with the proposed damper. A numerical study was conducted on the performance of an assumed frame with/without proposed damper. Dynamic analysis of the assumed frames for seven earthquake records demonstrate that, equipping moment-resisting frames with the proposed dampers decreases the maximum story drift of these frames with an average reduction of about 50%.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Characteristics of Structural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Beams Subjected to Torsion (강섬유 보강 초고성능 콘크리트 보의 비틀림 거동 특성)

  • Yang, In-Hwan;Joh, Changbin;Lee, Jung-Woo;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.87-95
    • /
    • 2014
  • Experimental investigation on the structural behavior of steel fiber-reinforced ultra high performance concrete (UHPC) beams subjected to torsion are presented. Six tests carried out on square beams under torsional moment are presented. The experimental parameters were the volume fraction of the fibers and closed-stirrup ratio. The volume fraction of the fibers was 1.0% and 2.0%. The closed-stirrup ratio was 0, 0.35%, and 0.70%. The test results indicated that ultimate torsional strength increased with increasing fiber volume, and that ultimate torsional strength also increased with increasing the closed-stirrup ratio. In addition, predictive equations for evaluating the ultimate torsional strength of UHPC beams were proposed. The comparison between computed values and the experimentally observed values was shown to validate the proposed analytical equations. It was found that predictions by using proposed equation provides good agreement with test results of UHPC beams.