DOI QR코드

DOI QR Code

Characteristics of Structural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Beams Subjected to Torsion

강섬유 보강 초고성능 콘크리트 보의 비틀림 거동 특성

  • Yang, In-Hwan (Dept. of Civil Engineering, Kunsan National University) ;
  • Joh, Changbin (Structural Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lee, Jung-Woo (Structural Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Byung-Suk (Korea Institute of Construction Technology)
  • 양인환 (군산대학교 토목공학과) ;
  • 조창빈 (한국건설기술연구원 인프라구조연구실) ;
  • 이정우 (한국건설기술연구원 인프라구조연구실) ;
  • 김병석 (한국건설기술연구원)
  • Received : 2013.09.10
  • Accepted : 2013.11.12
  • Published : 2014.02.28

Abstract

Experimental investigation on the structural behavior of steel fiber-reinforced ultra high performance concrete (UHPC) beams subjected to torsion are presented. Six tests carried out on square beams under torsional moment are presented. The experimental parameters were the volume fraction of the fibers and closed-stirrup ratio. The volume fraction of the fibers was 1.0% and 2.0%. The closed-stirrup ratio was 0, 0.35%, and 0.70%. The test results indicated that ultimate torsional strength increased with increasing fiber volume, and that ultimate torsional strength also increased with increasing the closed-stirrup ratio. In addition, predictive equations for evaluating the ultimate torsional strength of UHPC beams were proposed. The comparison between computed values and the experimentally observed values was shown to validate the proposed analytical equations. It was found that predictions by using proposed equation provides good agreement with test results of UHPC beams.

이 연구에서는 강섬유 보강 초고성능 콘크리트 보의 비틀림 거동을 파악하기 위한 실험연구를 수행하였다. 정사각형 단면을 갖는 6개의 초고성능 콘크리트 보 부재에 대해 하중재하실험을 수행하여 비틀림 거동 특성을 분석하였다. 부재의 실험변수는 강섬유 혼입량과 폐쇄 스터럽량이다. 강섬유 혼입량은 1.0% 및 2.0%로 변화하였고, 폐쇄 스터럽량은 0, 0.35% 및 0.70%로 변화하였다. 실험 결과는 강섬유양이 증가할수록 극한비틀림강도가 증가하고, 폐쇄스터럽량이 증가할수록 극한비틀림강도가 증가하는 것을 나타낸다. 또한, 비틀림 강도 예측식을 제안하였으며, 예측식은 콘크리트, 스터럽 및 강섬유의 비틀림 강도 기여분을 각각 고려하였다. 실험 결과를 이용하여 초고강도 콘크리트 보의 비틀림 강도 예측식의 적합성을 평가하고자 하였다. 비틀림강도 실험 결과를 예측값과 비교하였으며, 예측값은 실험 결과에 거의 근접하고 있는 것으로 나타났다. 따라서, 제안식을 이용하여 초고성능 콘크리트의 비틀림 강도를 효과적으로 예측할 수 있다고 판단된다.

Keywords

References

  1. Casanova, P., Pierre, R., and Schaller, I., "Can Steel Fibers Replace Transverse Reinforcements in Reinforced Concrete Beams?," ACI Structural Journal, Vol. 94, No. 5, 1997, pp. 341-354.
  2. Yang, I. H., Joh, C., and Kim, B. S., "An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders," Journal of the Korea Concrete Institute, Vol. 22, No. 6, 2010, pp. 777-786. https://doi.org/10.4334/JKCI.2010.22.6.777
  3. Lim, T. Y., Paramasivam P., and Lee, S. L., "Analytical Model for Tensile Behavior of Steel-Fiber Concrete," ACI Materials Journal, Vol. 84, No. 4, 1987, pp. 286-298.
  4. Meda, A., Minelli, F., Plizzari, G. A., and Riva, P., "Shear Behavior of Steel Fibre Reinforced Concrete Beams," Materials and Structures, Vol. 38, No. 277, 2005, pp. 343-351. https://doi.org/10.1007/BF02479300
  5. Yang, I. H., Joh, C., and Kim, B. S., "Flexural Strength of Large Scale Ultra High Performance Concrete Prestressed T-Beams," Canadian Journal of Civil Engineers, Vol. 38, No. 11, 2011, pp. 1185-1195. https://doi.org/10.1139/l11-078
  6. Association Francaise du Genil Civil (AFGC), Betons Fibres a Ultra-Hautes Performances, AFGC-SETRA, 2002, 152 pp.
  7. Federal Highway Administration (FHWA), Material Property Characterization of Ultra-High Performance Concrete, U.S Department Transportation, 2006, 176 pp.
  8. Yang, I. H., Joh, C., and Kim, B. S., "Structural Behavior of Ultra High Performance Concrete Beams Subjected to Bending," Engineering Structures, Vol. 32, No. 11, 2010, pp. 547-555. https://doi.org/10.1016/j.engstruct.2009.10.015
  9. Karihaloo, B. L. and Ghanbari, A., "Mix Proportioning of Self-Compacting High-and Ultra-High-Performance Concretes with and without Steel Fibres," Magazine of Concrete Research, Vol. 64, No. 12, 2012, pp. 1089-1100. https://doi.org/10.1680/macr.11.00190
  10. Mansur, M. A., Ong, K. C. G., and Paramasivam, P., "Shear Strength of Fibrous Concrete Beams without Stirrups," Journal of Structural Engineering, ASCE, Vol. 112, No. 9, 1986, pp. 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  11. Elliot, K. S., Peaston, C. H., and Paine, K. A., "Experimental and Theoretical Investigation of the Shear Resistance of Steel Fibre Reinforced Prestressed Concrete X-Beams-Part I : Experimental Work," Materials and Structures, Vol. 35, No. 253, 2002, pp. 519-527.
  12. Elliot, K. S., Peaston, C. H., and Paine, K. A., "Experimental and Theoretical Investigation of the Shear Resistance of Steel Fibre Reinforced Prestressed Concrete X-Beams Part II : Theoretical Analysis and Comparison with Experiments," Materials and Structures, Vol. 35, No. 253, 2002, pp. 528-535.
  13. Oh, Y. H. and Kim, J. H., "Estimation of Flexural and Shear Strength for Steel Fiber Reinforced Flexural Members without Shear Reinforcements," Journal of the Korea Concrete Institute, Vol. 20, No. 2, 2008, pp. 257-267. https://doi.org/10.4334/JKCI.2008.20.2.257
  14. Thomas, J. and Ramaswamy. "Shear Strength of Prestressed Concrete T-Beams with Steel Fibers over Partial/Full Depth," ACI Structural Journal, Vol. 103, No. 3, 2006, pp. 427-435.
  15. Narayanan, R. and Kareem-Palanjian, A. S., "Torsion in Beams Reinforced with Bars and Fibers," Journal of Structural Engineering, Vol. 112, No. 1, 1986, pp. 53-66. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:1(53)
  16. Rao, T. D. G. and Seshu, D. R., "Analytical Model for the Response of Steel Fiber Reinforced Concrete Members under Pure Torsion," Cement and Concrete Composites, Vol. 27, No. 4, 2005, pp. 493-501. https://doi.org/10.1016/j.cemconcomp.2004.03.006
  17. Mansur, M. A., Nagataki, S. H., Lee, S. H., and Oosumimoto, Y., "Torsional Response of Reinforced Fibrous Concrete Beams," ACI Structural Journal, Vol. 86, No. 11, 1989, pp. 36-44.
  18. Chalioris, C. E. and Karayannis, C. G., "Effectiveness of the Use of Steel Fibres on the Torsional Behaviour of Flanged Concrete Beams," Cement and Concrete Composites, Vol. 31, No. 1, 2009, pp. 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007
  19. Karayannis, C. G., "A Numerical Approach to Steel Fibre Reinforced Concrete under Torsion," Structural Engineering Review, Vol. 7, No. 2, 1995, pp. 83-91.
  20. Karayannis, C. G. and Chalioris, C. E., "Experimental Validation of Smeared Analysis for Plain Concrete in Torsion," Journal of Structural Engineering, Vol. 126, No. 6, 2000, pp. 646-653. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(646)
  21. Yang, I. H., Joh, C., Lee, J. W., and Kim, B. S., "Torsional Behavior of Ultra-High Performance Concrete Squared Beams," Engineering Structures, Vol. 56, 2013, pp. 372-383. https://doi.org/10.1016/j.engstruct.2013.05.027
  22. Hsu, T. T. C., Torsion of Reinforced Concrete, Van Nostrand Reinhold Company, 1984, 516 pp.
  23. Park, C. K., "Torsional Resistance of RC Beams Considering Tension Stiffening of Concrete," Journal of the Korea Concrete Institute, Vol. 14, No. 1, 2002, pp. 24-32. https://doi.org/10.4334/JKCI.2002.14.1.024
  24. Lee, J. Y. and Park, J. S., "Prediction of the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion," Journal of the Korea Concrete Institute, Vol. 14, No. 6, 2002, pp. 1010-1021. https://doi.org/10.4334/JKCI.2002.14.6.1010
  25. Vecchio, F. J. and Collins, M. P., "The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear," ACI Journal, Vol. 83, No. 2, 1986, pp. 219-231.
  26. Hsu, T. T. C., "Softened Truss Model Theory for Shear and Torsion," ACI Structural Journal, Vol. 85, No. 6, 1988, pp. 624-635.
  27. Nanni, A., "Design for Torsion Using Steel Fiber Reinforced Concrete," ACI Structural Journal, Vol. 87, No. 6, 1990, pp. 556-564.